
Please cite the Published Version

Yap, Moi Hoon , Cassidy, Bill , Byra, Michal, Liao, Ting-Yu, Yi, Huahui, Galdran, Adrian, Chen,
Yung-Han, Brüngel, Raphael, Koitka, Sven, Friedrich, Christoph M, Lo, Yu-wen, Yang, Ching-hui,
Li, Kang, Lao, Qicheng, Ballester, Miguel A González, Carneiro, Gustavo, Ju, Yi-Jen, Huang,
Juinn-Dar, Pappachan, Joseph M, Reeves, Neil D , Chandrabalan, Vishnu, Dancey, Darren
and Kendrick, Connah (2024) Diabetic foot ulcers segmentation challenge report: benchmark and
analysis. Medical Image Analysis, 94. 103153 ISSN 1361-8415

DOI: https://doi.org/10.1016/j.media.2024.103153

Publisher: Elsevier

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/635026/

Usage rights: Creative Commons: Attribution-Noncommercial 4.0

Additional Information: This is an open access article which first appeared in Medical Image
Analysis

Data Access Statement: The data has been made available for DFUC 2022 participants. It is
made available upon request by submitting a licence agreement to the dataset owner.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0001-7681-4287
https://orcid.org/0000-0003-3741-8120
https://orcid.org/0000-0001-9213-4580
https://orcid.org/0000-0001-7251-8958
https://doi.org/10.1016/j.media.2024.103153
https://e-space.mmu.ac.uk/635026/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Medical Image Analysis 94 (2024) 103153

Available online 24 March 2024
1361-8415/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

Diabetic foot ulcers segmentation challenge report: Benchmark and analysis
Moi Hoon Yap a,p,∗, Bill Cassidy a, Michal Byra b,c, Ting-yu Liao d, Huahui Yi e, Adrian Galdran f,g,
Yung-Han Chen h, Raphael Brüngel i,j,k, Sven Koitka k,l, Christoph M. Friedrich i,j, Yu-wen Lo d,
Ching-hui Yang d, Kang Li e,n, Qicheng Lao m,n, Miguel A. González Ballester f, Gustavo Carneiro o,
Yi-Jen Ju h, Juinn-Dar Huang h, Joseph M. Pappachan p,q, Neil D. Reeves q,
Vishnu Chandrabalan p, Darren Dancey a, Connah Kendrick a

a Department of Computing and Mathematics, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, United Kingdom
b Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
c RIKEN Center for Brain Science, Wako, Japan
d Department of Computer Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan
e West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
f BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain
g AIML, University of Adelaide, Australia
h Institute of Electronics, National Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu 300, Taiwan
i Department of Computer Science, University of Applied Sciences and Arts Dortmund (FH Dortmund), Emil-Figge-Str. 42, 44227 Dortmund, Germany
j Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Zweigertstr. 37, 45130 Essen, Germany
k Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Girardetstr. 2, 45131 Essen, Germany
l Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
m School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
n Shanghai Artificial Intelligence Laboratory, Shanghai, China
o University of Surrey, Guildford, United Kingdom
p Lancashire Teaching Hospitals NHS Trust, Preston, PR2 9HT, United Kingdom
q Department of Life Sciences, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom

A R T I C L E I N F O

Keywords:
Deep learning
Diabetic foot ulcers
Segmentation
Convolutional neural networks
Metrics

A B S T R A C T

Monitoring the healing progress of diabetic foot ulcers is a challenging process. Accurate segmentation of
foot ulcers can help podiatrists to quantitatively measure the size of wound regions to assist prediction of
healing status. The main challenge in this field is the lack of publicly available manual delineation, which can
be time consuming and laborious. Recently, methods based on deep learning have shown excellent results in
automatic segmentation of medical images, however, they require large-scale datasets for training, and there is
limited consensus on which methods perform the best. The 2022 Diabetic Foot Ulcers segmentation challenge
was held in conjunction with the 2022 International Conference on Medical Image Computing and Computer
Assisted Intervention, which sought to address these issues and stimulate progress in this research domain.
A training set of 2000 images exhibiting diabetic foot ulcers was released with corresponding segmentation
ground truth masks. Of the 72 (approved) requests from 47 countries, 26 teams used this data to develop fully
automated systems to predict the true segmentation masks on a test set of 2000 images, with the corresponding
ground truth segmentation masks kept private. Predictions from participating teams were scored and ranked
according to their average Dice similarity coefficient of the ground truth masks and prediction masks. The
winning team achieved a Dice of 0.7287 for diabetic foot ulcer segmentation. This challenge has now entered
a live leaderboard stage where it serves as a challenging benchmark for diabetic foot ulcer segmentation.

1. Introduction

Following the successes of previous Diabetic Foot Ulcers Challenges
(DFUC), i.e. DFUC 2020 (Cassidy et al., 2021b) and DFUC 2021 (Yap
et al., 2021a), DFUC 2022 focused on segmentation (Kendrick et al.,
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2022). This paper reports on the insights of the DFUC 2022 and
conducts a post-analysis of the participants’ methods and results. We
conduct a comprehensive analysis on the performance of the winning
algorithms by studying three ensemble methods, conducting statistical
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analysis on the results, analysing region-based segmentation, and in-
vestigating the relationship between Dice similarity coefficient (DSC)
values and region sizes. This research has been completed in adherence
to the Biomedical Image Analysis Challenges (BIAS) guidelines (Maier-
Hein et al., 2020a), as approved by the Enhancing the QUAlity and
Transparency Of health Research (EQUATOR) initiative (Pandis and
Fedorowicz, 2011).

2. Challenge description

The diabetic foot ulcers challenges (2020–2022) are a series of
annual deep learning challenges hosted by the Medical Image Com-
puting and Computer Assisted Interventions (MICCAI) society for the
international conferences which they organise each year. The pur-
pose of these challenges is to develop fully automated deep learning
methods for localisation, classification, and segmentation of DFU. The
first diabetic foot ulcer challenge (DFUC 2020) focused on DFU lo-
calisation methods for automated DFU detection. Two winning teams
were declared for DFUC 2020: (1) Ryo Hachiuma, Hiroki Kajita and
Hideo Saito (Keio University and Keio University School of Medicine,
Japan) achieved the highest mAP (0.6940), and (2) Manu Goyal and
Saeed Hassanpour (Dartmouth College, USA) achieved the highest F1-
score (0.7434) (Yap et al., 2021b). The second challenge (DFUC 2021)
focused on multi-class classification for 4 classes (control, infection,
ischaemia, and both infection and ischaemia). The winner of DFUC
2021 was Adrian Galdran (Bournemouth University, UK) with a macro
F1-score of 0.6216 (Cassidy et al., 2021a). The third challenge (DFUC
2022) focused on delineation of DFU at pixel level, which is a key task
for wound area measurement.

2.1. Organisation

The diabetic foot ulcer challenges 2020–2022 were co-organised by
researchers from the United Kingdom (The Manchester Metropolitan
University (MMU), Lancashire Teaching Hospitals (LTH) and University
of Manchester (UoM)), New Zealand (Waikato District Health Board
(WDHB)), the United States (University of Southern California (USC)
and Baylor College of Medicine (BCM)) and India (Manipal College of
Health Professions (MCHP)). The diabetic foot ulcer challenge 2022
was organised by Moi Hoon Yap (MMU), Neil Reeves (MMU), Andrew
Bolton (UoM), Satyan Rajbhandari (LTH), David Armstrong (USC),
Arun G. Maiya (MCHP), Bijan Najafi (BCM), Bill Cassidy (MMU), and
Justina Wu (WDHB).

The goal of the 2022 challenge was to evaluate the performance of
computer algorithms in diabetic foot ulcers (DFU) segmentation.

2.2. Dataset preparation

Medical photographs of DFU wounds were acquired from diabetic
patients at the Lancashire Teaching Hospitals NHS Foundation Trust
by two clinical experts in podiatry. The DFU wound photographs were
acquired using three digital cameras: a Kodak DX4530 (5 megapixel),
a Nikon COOLPIX P100 (10.3 megapixel), and a Nikon D3300 (24.2
megapixel). All DFU wound photographs were acquired with close-ups
of the patient’s foot using auto-focus, with zoom or macro functions
disabled. A camera aperture setting of f/2.8 was used, with photographs
taken at a distance of approximately 30–40 cm with a parallel orien-
tation to the plane of the DFU. Flashes were deactivated, with room
lighting used as the primary light source. The DFU wound photographs
were distributed between 5 podiatrists, each with more than 5 years
of clinical experience. Instructions were provided to the experts to
delineate the ulcer regions using the VGG Image Annotator software
tool (Dutta et al., 2016; Dutta and Zisserman, 2019). The polygon
regions defined by the experts were then smoothed using a snake
active contour algorithm (Kroon, 2022), followed by conversion to
binary masks, with black pixels representing the background, and white

pixels representing wound regions. The binary masks were used as
ground truth for both training and testing sets. The original DFU
wounds photographs were captured at various resolutions, therefore,
as a preprocessing stage all photographs and corresponding masks
were resized to 640 × 480 pixels as a standardisation measure. Ethical
approval was obtained from the UK National Health Service (NHS)
Research Ethics Committee (REC) to use these images for the purpose
of research. The NHS REC reference number is 15/NW/0539. Written
informed consent was obtained from all participating patients. As in
DFUC 2020, the dataset was divided into two main sets of images and
corresponding binary masks — the training set (𝑛 = 2000) and the
testing set (𝑛 = 2000). We divided the data evenly to ensure that models
could be trained and tested sufficiently. Prior chronic wound datasets
comprised relatively small test sets (approximately 20%) which may
not sufficiently challenge trained models. Therefore, we determined
that a 50:50 split would help towards obtaining more accurate test
metrics.

2.3. Leaderboard management

The Grand-Challenge online platform (https://dfuc2022.grand-chal
lenge.org/) was used to process three leaderboard submission phases,
i.e., validation stage, testing stage, and a live leaderboard to con-
tinue to support the research community after the challenge deadline.
Participants were required to submit prediction masks to the online
challenge platform with pixel-wise labels for background (0) and ulcer
regions (1). A paper highlighting the contribution of the submission,
including the method description, experimental results and analysis,
and a GitHub repository URL containing all source code was also
required (in accordance to the format stipulated by MICCAI 2022).
The evalutils (Meakin, 2018) software library was used to measure the
performance of segmentation accuracy of participant prediction masks.
During the validation stage, participants were permitted a maximum
of 10 submissions per day over a period of 6 weeks. The validation
stage was used for sanity checking and fine-tuning of models using the
validation dataset (a subset of the testing set). During the testing stage,
participants were limited to submit once per day over a period of two
weeks. The results were not released during the testing stage to prevent
participants overfitting their models to the testing set.

2.4. Dataset usage and participation policy

Participants were permitted to use non-challenge datasets for train-
ing and validation purposes. This included other publicly available
DFU datasets. Additionally, participants were permitted to use their
own datasets on the basis that those datasets were shared publicly
with the research community. Participants were permitted to use the
dataset for non-commercial purposes only. Additionally, participants
were prohibited from modifying the ground truth masks. Organisations
or companies who were affiliated with members of the organising
committee were not excluded from participation in the challenge.
However, such organisations/companies were required to ensure that
their submissions were completely independent of the members of the
organising committee.

2.5. Results announcement and award policy

All challenge results were made available publicly on the DFUC
2022 website (https://dfu-challenge.github.io/) and the Grand Chal-
lenge website (https://dfuc2022.grand-challenge.org/). The top-5 per-
forming methods were then invited to the in-person challenge event to
present their work. Certificates were provided to the top-3 performing
teams. Prizes were also awarded to the top-3 performing teams, which
were provided by AITIS who were the challenge sponsors. The prizes
awarded were wearable monitoring sensor devices.
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2.6. Challenge schedule and publication policy

The training data was released on the 27th April 2022. Following
this, the validation data was released on the 21st June 2022. The
test data was released on the 1st July 2022, with a final submission
deadline on the 29th July 2022. The winner and invitation speakers
were announced on the 15th August 2022. All challenge deadlines
were subject to change according to MICCAI 2022 scheduling changes.
The challenge organisers were responsible for publishing one or more
challenge journal papers which reported on the challenge results. Par-
ticipating authors were permitted to publish their papers separately,
with decisions on publication strategy made according to achieving
publication in the highest ranking journals.

2.7. Conflict of interest statement and test label safeguarding

No external funding was received in relation to the DFUC 2022.
Additionally, no funding was received from the challenge sponsors
(AITIS). Ground truth masks for the DFUC 2022 test set are accessible
only to the following MMU Computer Vision Laboratory researchers:
Moi Hoon Yap, Connah Kendrick, and Bill Cassidy.

2.8. Metrics and evaluation

To assess the performance of the algorithms developed by partici-
pants, we determine segmentation accuracy in terms of DSC, Jaccard
index, False Positive Error (FPE), and False Negative Error (FNE).
Image-based metrics were used to allow multiple DFU wounds to be
evaluated as a single wound per image.

DSC was used to determine overall leaderboard rankings, and is
defined as two times the area of the intersection of X (ground truth)
and Y (prediction), divided by the sum of the areas of X and Y. DSC
values are reported in the range of 0− 1, where 0 indicates no overlap,
and 1 indicates a perfect overlap. DSC is denoted by Eq. (1).

𝐷𝑆𝐶 = 2 ∗
|𝑋 ∩ 𝑌 |
|𝑋| + |𝑌 |

= 2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(1)

where TP is True Positives, FP is False Positives and FN is False
Negatives. In the case of ties in DSC, the Jaccard index, also known
as Intersection over Union (IoU), is used as the second metric for the
leaderboard rankings. IoU is defined as the area of intersection divided
by the area of union, and is expressed as Eq. (2).

𝐼𝑜𝑈 =
|𝑋 ∩ 𝑌 |
|𝑋 ∪ 𝑌 |

= 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(2)

The FPE indicates the ratio of a method which falsely predicts a
non-DFU pixel as a DFU pixel, and is defined in Eq. (3).

𝐹𝑃𝐸 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(3)

where TN is True Negatives. The FNE indicates the ratio of a method
which falsely predicts a DFU pixel as non-DFU pixel, and is denoted as
in Eq. (4).

𝐹𝑁𝐸 = 𝐹𝑁
𝐹𝑁 + 𝑇𝑃

(4)

Both DSC and IoU assume that an overlap is present. In cases where
prediction masks show no overlap with ground truth masks, a score of
0 is assigned.

3. Summary of challenge methods

Since the opening of DFUC 2022, we received 72 requests from
47 countries to obtain the challenge datasets. A total of 26 teams
participated in the challenge. In the DFUC 2022 proceedings (Kendrick
et al., 2023), we summarise the methods from the top-10 teams, who
have submitted their challenge papers and presented at the DFUC 2022
conference in conjunction with MICCAI 2022, conducted in Singapore

Fig. 1. Overview of HarDNet-DFUS.

on the 22nd September 2022. This post-challenge analysis focuses on
the performance of the five winning teams who achieved a DSC > 0.7.
We conduct a size analysis based on the per ulcer-based segmentation,
examine the effectiveness of ensemble models, and perform statistical
analysis on the results. The top-5 participating teams who were eligible
for inclusion in the present challenge report are as follows: (1st place)
Yllab Team, (2nd place) LkRobotAILab Team, (3rd place) AGaldran
Team, (4th place) ADAR-LAB Team, and (5th place) FHDO Team.

3.1. Liao et al. (1st place, Yllab team)

Liao et al. (2023) proposed HarDNet-DFUS, as depicted in Fig. 1. It
consists of an encoder backbone with a new HarDBlkV2 module and the
decoder with a Lawin Transformer (Yan et al., 2022). The backbone of
the previous state-of-the-art HarDNet-MSEG (Huang et al., 2021) (used
for colonoscopic polyp segmentation) was enhanced and repurposed
for DFU segmentation. HarDBlockV2 is modified from HarDBlock by
referring to the concepts of CSPNet (Wang et al., 2020) and Shuf-
fleNetV2 (Ma et al., 2018). The following three enhancements were
implemented in the network design:

1. Channel splitting was performed on the convolutional layer
according to its output connection number, which can reduce
the DRAM access to achieve the optimal MACs over CIO ratio
(MoC), as proposed by HarDNet (Chao et al., 2019b).

2. Inter-layer connectivity is performed based on the factors of
the required block depth, simplifying the design of the network
architecture so that the depth of the basic building block is no
longer limited to a power of 2.

3. A squeeze and excite attention module (Hu et al., 2018a) was
inserted after the block output in the transition layer, which
facilitates utilisation of multi-scale information.

For the full description of this method, please refer to Liao et al.
(2023).

Unlike colonoscopy polyp segmentation, the DFUC 2022 segmen-
tation challenge does not include real-time processing as a criterion.
To obtain higher accuracy, a more complex decoder was selected, the
Lawin decoder, to replace the original decoder of HarDNet-MSEG. The
keypoint of the decoder of the Lawin Transformer is the proposed
attention mechanism called Large Window Attention, which can cap-
ture multi-scale features and represent the segmentation result more
precisely (see Fig. 1).

To consider the full dataset, 5-fold cross validation was used to
obtain five sub-models, followed by test time augmentation to test
different transformed images, using transformations such as vertical
and horizontal flips. Finally, the average result values from the sub-
models are used as the final output. The outputs are passed through the
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Fig. 2. Overview of Edge_OCRNet. On the basis of OCRNet, the backbone network is
replaced by ConvNeXt, the outputs of the four layers of the backbone are merged and
an edge loss is added.

Tanh function to generate a binary predicted mask and then rounded to
{0, 1}. After completing these steps, we apply morphological operations
to fill the holes within segmented regions to improve the true positive
rate.

3.2. Yi et al. (2nd place, LkRobotAILab team)

The focus of Yi et al.’s approach (Yi et al., 2023) was to improve on
the fine details of DFU segmentation predictions. First, a coarse-to-fine
two-stage structure was used, similar to how the human visual system
functions. Second, edge information was added from the DFU mask as
additional supervisory information during training. For the coarse-to-
fine structure, OCRNet (Yuan et al., 2019) was used as the baseline
model. The first stage of the baseline is a simple FCN (Long et al., 2015).
In this stage, the FCN is used to coarsely segment the DFU and the
result is fed into the next stage as wound semantic information. In the
second stage, the wound semantic information interacts with the pixel
representation information to produce a more detailed segmentation
result. To extract more robust pixel and semantic representational in-
formation, ConvNeXt (Liu et al., 2022), a state-of-the-art classification
network was chosen as the backbone for the model. Additionally,
the output features of the four layers of the ConvNeXt encoder were
concatenated to enhance the model’s perception of spatial information
and to improve its generalisation of changes in the object scale. In the
DFUC 2022 dataset, the diverse representation of DFU edges was noted.
In order to further improve the DFU segmentation results, an ‘‘edge
loss’’ loss function was added to constrain boundary information. The
above improvements form the final model, namely Edge-OCRNet. Its
structure is illustrated in Fig. 2. For a full description of this method,
please refer to Yi et al. (2023).

3.3. Galdran et al. (3rd place, Agaldran team)

This approach was focused on a specific aspect of the foot ulcer seg-
mentation problem: analysing the robustness to the potential absence of
a DFU in the image (Galdran et al., 2023). In this case, robustness was
understood as reliably handling images that might not contain any DFU,
without creating false positives. Note that in DFUC 2022 (Kendrick
et al., 2022), predicting a single DFU pixel on a DFU-free image would
result in a DSC of 0. Therefore it becomes critical to avoid false positive
detections in disease-free samples.

With the aim of training a model that reliably discards healthy
images, we carried out a comprehensive analysis on the impact of a
range of five popular segmentation loss functions, which were used to
optimise the weights of an array of different architectures, all of which
were double encoder–decoder networks, but with different architec-
tural backbones (Galdran et al., 2021). Fig. 3 illustrates the architecture
of the proposed method. As detailed in Section 5.3, the standard Cross-
Entropy loss function was shown to be the most robust of all the
loss functions tested with DFU-free images. Coupled with a five-fold

Fig. 3. Overview of the AGaldran Team approach. A double encoder–decoder net-
work (Galdran et al., 2022) takes an image, generates a prediction and then uses the
image with the prediction to refine the output. This architecture was optimised with
five different loss functions in order to find out which option would work better in the
absence of a DFU on the input image.

Fig. 4. Overview of the modified TransFuse model proposed by the ADAR-LAB team
for DFUC 2022. The Transformer-branch encoder is CSwin-Base and the CNN-branch
is ResNet-50. They are fused by Fusion modules at 3 different resolutions. Due to the
additional upsampling module applied on the Transformer branch, feature maps can
be decoded at a higher resolution compared to the original TransFuse model.

ensemble of a double FPN model with a ResNeXt101 backbone, this
was the final submitted solution, as outlined in Section 4.3. The analysis
shows that using the popular DSC loss for segmenting DFU would result
in accurate delineations whenever an ulcer was present, but tended
to generate spurious predictions when the image contained no DFU.
This anomaly is likely due to the well-known miscalibration of models
trained with Cross-Entropy loss (Mehrtash et al., 2020-12).

3.4. Chen et al. (4th place, ADAR-LAB team)

ADAR-LAB proposed a modified TransFuse model for DFUC 2022,
which consists of a transformer branch, CNN branch, and fusion mod-
ules. The overview of their proposed architecture is shown in Fig. 4.

The CSWin-Transformer was selected as the backbone of the Trans-
former branch (Dong et al., 2022) due to its state-of-the-art perfor-
mance with publicly available pre-trained weights. An additional up-
sampling module was applied in the Transformer branch to allow for
the feature maps to be decoded at a higher resolution, so that the error
on the edges can be reduced.

For the CNN branch, ResNet-50 and HarDNet-68 (He et al., 2016;
Chao et al., 2019a) were considered for the backbone to extract local
features. Limiting the model size is helpful to decrease the mem-
ory overhead during training. Through our experiments, we found
that ResNet-50 demonstrated higher performance in validation, so it
was adopted as the CNN-branch backbone in the proposed model
architecture.

The function of the Fusion module is to apply attention to and
combine the outputs of the Transformer and CNN branches. Two kinds
of attention modules are applied: the squeeze-and-excite (SE) block,
a channel-attention technique, and the convolutional block attention
module (CBAM), a spatial-attention technique (Hu et al., 2018b; Woo
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Fig. 5. Overview of the Feature Pyramid Network (Lin et al., 2017) architecture,
utilising a ResNeXt (Xie et al., 2017) backbone with a Squeeze-and-Excitation (Hu
et al., 2020) module, partially adapted from illustrations from the original works.

et al., 2018). Because the feature maps from the CNN branch contain
local information but lack global features, the CBAM block is more
suitable. In contrast, since feature maps from the Transformer branch
contain global features, but less local features, the SE block is consid-
ered to be a better fit. The design of our proposed method is in contrast
to the design of the fusion module in the original TransFuse model,
where the SE block is used for the CNN branch and the CBAM block
is used in the Transformer branch. Full details of the proposed method
are described in Chen et al. (2023).

3.5. Brüngel et al. (5th place, FHDO team)

Prior work during the DFUC 2021 (Bloch et al., 2022) has proven
the potential of Generative Adversarial Network (GAN) (Goodfellow
et al., 2014)-generated synthetic images for dataset enrichment. In
such cases, DFU infection and ischaemia classification performance
was demonstrably improved. The approach used by team FHDO during
the DFUC 2022 (Brüngel et al., 2023) again relied on such a strategy
to investigate the effects of synthetically generated DFU images on
DFU segmentation performance. However, for this new segmentation
task, the implementation differs in accordance to the nature of the
segmentation problem.

Usually, conditional GANs (Mirza and Osindero, 2014) should be
preferred for the task of segmentation dataset enhancement. Masks
used for synthetic image generation can directly serve as ground truth
labels. Furthermore, masks can be shaped arbitrarily, enabling mea-
sures for increasing robustness against non-standard shape representa-
tions. However, preliminary experiments using the DFUC 2022 dataset
with conditional GAN implementations did not yield adequate syn-
thetic image quality. This could mainly be ascribed to the limited
number of training images (𝑛 = 2000) with a predominant amount
of very small DFU wound instances, as low data-efficiency of current
conditional GAN implementations is a bottleneck. The lack of spa-
tial information/complexity in single-class DFU segmentation problems
also hinders conditional GANs in achieving high-quality generation
results. Non-DFU tissue and other human body parts are equated with
overall background features, making differentiated feature learning of
such areas highly challenging. To address such challenges, the pro-
posed method used StyleGAN2+ADA (Karras et al., 2020), a member
of the unconditional StyleGAN (Karras et al., 2019) family that ap-
plies Adaptive Discriminator Augmentation (ADA) to achieve a high
data-efficiency.

The proposed DFU segmentation approach involved models with
a Feature Pyramid Network (FPN) (Lin et al., 2017) architecture,
using an SE-ResNeXt101-32x4d backbone as variant of ResNeXt (Xie
et al., 2017) including a Squeeze-and-Excitation (SE) (Hu et al., 2020)
module. An overview of the proposed architecture is shown in Fig. 5.

Fig. 6. Illustration of the ensemble approach used by the FHDO team: The last 𝑟
checkpoints of 𝑛 training epochs of 𝑘 differently initialised models are used in an
ensemble 𝜇 for averaged predictions.

Predictions were inferred using a large ensemble of different model
checkpoints, as shown in the schematic in Fig. 6. A total of 𝑘 = 5 differ-
ently initialised models were trained using a five-fold cross validation
approach. The last 𝑟 = 5 epoch checkpoints of 𝑛 epochs were persisted
and utilised in an ensemble 𝜇, consisting of 𝑘 × 𝑟 = 25 checkpoints.
The 𝑘 × 𝑟 = 25 predictions of these for an image were averaged to a
final mask, oriented towards Polyak–Ruppert averaging (Polyak, 1990;
Ruppert, 1988).

Essential implementation details are summarised in Section 4.5,
with more detailed elaborations given in Brüngel et al. (2023).

4. Implementation

4.1. Yllab team implementation

During the training stage, ImageNet pre-trained weights were used
to initialise the backbone, followed by training for 300 epochs using
the AdamW optimiser. The batch size was set to 6, with a learning rate
of 𝑙 = 1𝑒−4 with a cosine-annealing scheduler. To preserve the original
image aspect ratio, the training images are zero-padded into square
dimensions then randomly resized between 384 × 384 and 640 × 640
pixels. To allow for the model to learn more features across the different
examples, data augmentation methods were employed during training
including random vertical flipping, horizontal flipping, and cropping,
etc.

During the testing phase, Test Time Augmentation was with the five
sub-models respectively, with the predictions averaged to form the final
results.

4.2. LkRobotAILab team implementation

The solution relies on MMSegmentation,1 an open source seman-
tic segmentation toolbox based on PyTorch, which is discussed in
Section 3.2. All models were trained and tested on a single NVIDIA
GeForce RTX™ 3090 24G. The following is a discussion of the specific
implementation details.

In the training phase, pre-trained ImageNet (Deng et al., 2009)
classification networks were used as backbones. The best performing
of these pre-trained models was ConvNeXt-XL (Liu et al., 2022) pre-
trained on ImageNet-21K. The AdamW optimiser was used with a
learning rate to 8e-5, weight decay of 0.05, a warmup step rate of
1500, a warmup ratio of 1e-6, a batch size of 4, and training iterations
set to 60K if not specified. For training, the original DFUC 2022
training images were used as input (480 × 640 pixels) together with
multi-scale examples used for data augmentation with an image size

1 MMSegmentation: https://github.com/open-mmlab/mmsegmentation/
(accessed 2023-02-03).

https://github.com/open-mmlab/mmsegmentation/
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distribution interval of (0.5, 2.0) in steps of 0.25. Horizontal flipping
(with 0.5 probability), random cropping (cropping size 512 × 512,
maximum crop rate 0.75), and Photometric Distortion augmentation
methods were also used to enhance the training data and to improve
the generalisation ability of the model.

The use of multi-scaling and random cropping strategies during
the training phase allowed the model to benefit from the FixRes ef-
fect (Touvron et al., 2019) whereby performance is improved by using
larger images during testing. During experiments, we observed that
size range 𝑆𝑡𝑟∕𝑆𝑖𝑛𝑓𝑒𝑟 = [1.2, 1.5] can produce better results in the
DFUC 2022 segmentation task when using this training strategy. An
input image size of 576 × 768 pixels was selected for the prediction.
To alleviate the difference between the training domain and the test
domain, test images were processed with gamma correction to increase
the brightness of the test set. The ratio 𝑟𝑔𝑎𝑚𝑚𝑎 = 𝑅𝐺𝐵𝑡𝑟𝑎𝑖𝑛

𝑚𝑒𝑎𝑛∕𝑅𝐺𝐵𝑡𝑒𝑠𝑡
𝑚𝑒𝑎𝑛 was

used to determine gamma values in test images. In addition, multi-scale
testing and TTA (horizontal and vertical flips) were also used during the
inference of test images.

The DFUC 2022 segmentation task is a binary classification task for
each pixel. At the time of prediction, the pixel is considered to belong
to the DFU if its prediction score is greater than a threshold (t=0.655),
otherwise, it is considered to be the background.

4.3. AGaldran team implementation

This approach adopted a Feature-Pyramid Network architecture as
part of a double encoder–decoder variant, as in the authors prior
works (Galdran et al., 2021). Several backbone encoders, optimised
with five different loss functions were also used. Each model was
pre-trained using Imagenet weights, which were then optimised using
the Adam optimiser with a learning rate of 𝑙 = 3𝑒 − 4, a batch-
size of 4, and an image size of 640 × 512. During training, images
were augmented using common image processing operations (random
rotations, translations, scalings, vertical/horizontal flipping, and con-
trast/saturation/brightness changes.). During the testing phase, Test-
Time Augmentation was utilised.

The above process resulted in selecting a ResNext101 backbone
trained and optimised with the Cross-Entropy loss function, which
resulted in the highest performance, both in an internal five-fold cross-
validation setup, and also when submitting to the public DFUC 2022
validation leaderboard. The segmentation results from the final test set,
using the resulting five-fold model ensemble, were submitted to the
DFUC 2022 test leaderboard.

4.4. ADAR-LAB team

Prior to training the segmentation network, an RPN with a ResNet-
50 backbone was trained for 10,000 iterations (Girshick, 2015). The
AdamW optimisation algorithm was employed to optimise parameters
with a learning rate of 10−5. The batch size of each iteration was set to
32, sampled randomly from 1800 images in the training dataset, with
the remaining 200 images used as validation data.

For the segmentation task, two stages were employed in the training
process. First, we initialised of two backbones (He et al., 2016; Dong
et al., 2022) using ImageNet pre-trained weights. The models were then
trained with 1800 images using the AdamW optimiser, with a learning
rate of 3× 10−5, and a batch size of 8 for 100 epochs. The loss function
is the same as defined in the PraNet implementation (Fan et al., 2020).
The model with the highest validation metrics was saved, and then used
as the pre-trained weights for the next phase.

Using the best-performing parameters from the first stage of train-
ing, the second stage of training was completed using all 2000 training
images for 50 epochs, or 20 epochs when the multi-scaling method was
applied. In this stage, the batch size was set to 12, in which 4 comprised
of resized inputs, and another 4 were cropped from one of corners,
with the remainder cropped according to the RPN results. Two different

optimisers were used: (1) SGD (used only for the CNN-branch backbone
in the TransFuse model) with a momentum of 0.9, a learning rate of
10−4, scheduled by a cosine-annealing scheduler; and (2) AdamW with
a learning rate of 3 × 10−5, also utilising a cosine annealing scheduler
and employed for the rest of parameters in the model. The learning
rates of both optimisers would decay to 0.1 of the initial learning rate
at the end of training.

4.5. FHDO team implementation

The approach described in Section 3.5 utilised the Segmentation
Models PyTorch2 (SMP) as a wrapper framework for PyTorch (Paszke
et al., 2019)-based segmentation implementations, and StyleGAN2+
ADA (Karras et al., 2020) for synthetic DFU image generation. The
following subsections summarise implementation aspects, for which
further details are reported in Brüngel et al. (2023).

4.5.1. Ensembles of base models and extended models
As intensities of DFU instance border regions in the training set

ground truth masks ranged from 0 to 255, masks were binarized
using a threshold of ≥ 128. A total of 39 duplicate image pairs were
identified with slightly differing ground truth were merged, keeping
one instance with logically OR-ed corresponding masks. The resulting
training dataset comprised of 1961 images with 2262 DFU instances.

For all baseline and extended segmentation models, nearly identical
training configurations were used. An FPN (Lin et al., 2017) archi-
tecture with SE-ResNeXt101-32x4d (Hu et al., 2020; Xie et al., 2017)
backbone was used, pre-trained on ImageNet (Deng et al., 2009), using
the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation function. Adam (Kingma and Ba, 2015) was
chosen as the optimiser with an initial learning rate of 0.0001, with DSC
as the loss function. All models were trained on a single NVIDIA®V100
16 GB,3 using a batch size of 24. The only differences between baseline
and extended models were the number of trained epochs, the learning
rate schedule, and, most decisively, the training set variant (baseline
or extended) they were trained on. Baseline models were trained for
150 epochs, dropping the learning rate to 0.00005 at epoch 100 and to
0.00001 at epoch 135. Extended models were trained for 150 epochs,
dropping the learning rate to 0.00001 at epoch 120.

A consistent augmentation pipeline was applied for training, imple-
mented using the Albumentations library (Buslaev et al., 2020). Aug-
mentations and parameters were chosen to not distort DFU representa-
tions beyond domain-typical variance, thus excluded methods such as
colour shifts or channel drops. If not stated otherwise, the default pa-
rameterisation of operations was used. The pipeline first applied guar-
anteed random cropping (RandomCrop with 𝚠𝚒𝚍𝚝𝚑∕𝚑𝚎𝚒𝚐𝚑𝚝 = 352, 𝑝 =
1.0), followed by random image flipping (Flip, 𝑝 = 0.5) as well as shift-
ing, scaling, and rotating (ShiftScaleRotate, 𝑝 = 0.5). To distort
images, either grid distortion, elastic transformation (GridDistort,
or ElasticTransform, 𝑝 = 0.5) were applied randomly. Bright-
ness and contrast were also modified, applying either contrast-limited
adaptive histogram equalization (CLAHE), random gamma, or ran-
dom brightness and contrast (CLAHE, RandomGamma or Random-
BrightnessContrast, 𝑝 = 0.5). Random sharpening or (motion)
blurring (Sharpen or Blur with 𝚋𝚕𝚞𝚛𝚕𝚒𝚖𝚒𝚝 = 8 or MotionBlur
with 𝚋𝚕𝚞𝚛𝚕𝚒𝚖𝚒𝚝 = 8, 𝑝 = 0.5) was also applied. Gaussian noise
(GaussianNoise, 𝑝 = 0.5) was added as final step.

The baseline models were trained on the clean baseline training
set variant with 1961 images. These were then used to pseudo-label
synthetic images, generated as described in Section 4.5.2. Extended
models were then trained on the synthetically enriched training set with
5961 images (+4000 pseudo-labelled synthethic images).

2 Segmentation Models PyTorch library: https://github.com/qubvel/
segmentation_models.pytorch/ (access 2023-01-29).

3 https://www.nvidia.com/en-us/data-centre/v100/ (2023-01-29).

https://github.com/qubvel/segmentation_models.pytorch/
https://github.com/qubvel/segmentation_models.pytorch/
https://www.nvidia.com/en-us/data-centre/v100/
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Table 1
A comparison of the methods proposed by the winners. Note that all methods adopted data augmentation and pre-trained models in their
implementation. We observe that the backbone selections are varied for the participants. TTA: Test Time Augmentation.

Team Augmentation Method Backbone Post-processing

Yllab Yes HarDNet-DFUS HarDBlkV2 & Lawin Transformer Average of TTA
LkRobotAILab Yes Edge-OCRNet ConvNeXt Multi-scale and TTA
AGaldran Yes Double Encoder-Decoder ResNeXt101 5-fold models ensemble
ADAR-LAB Yes Modified Transfuse model CSWin-Transformer & ResNet50 Voting of TTA
FHDO Yes Feature Pyramid Network SE-ResNeXt101-32 × 4d Ensemble approach

Table 2
Results of five submissions using HarDNet-DFUS in the final testing phase of DFUC
2022.

Model Dice

HarDNet-DFUS+Deep1+Boundary 0.7237
HarDNet-DFUS+Deep1+Boundary (w/ hflip) 0.7243
HarDNet-DFUS+Deep1+Deep2+Boundary (w/ hflip) 0.7273
HarDNet-DFUS+Deep1+Deep2+Boundary (w/ vflip) 0.7275
HarDNet-DFUS+Deep1+Deep2+Boundary (w/ vhflip) 0.7287

All segmentation model predictions were inferred at a confidence
threshold of 50 % and had the same weight in averaged ensembles. Sim-
ple post-processing was applied for all baseline ensemble predictions
on the validation set, and pseudo-labels for synthetic images, involving
instance filtering by size. Instances detected by a contour finding algo-
rithm (Suzuki and Abe, 1985) were removed when measuring < 1 ‰
of the whole image area. This was only applied to predictions with
more than one instance. Finally, opening was applied with a 2 × 2
square kernel for size filtering artefact removal. Whether this procedure
was applied for a submission or not is stated in the reported results in
Section 5.5.

4.5.2. Synthetic image generation and pseudo-labelling
A StyleGAN2+ADA (Karras et al., 2020) generation model was

trained for 1000 steps on 512 × 512 px centre crops of the pre-processed
training set with activated mirroring amplification. This involved four
NVIDIA®V100 16 GB GPUs, enabling a batch size of 32. The default
512 px configuration with Flickr Faces HQ (Kazemi and Sullivan, 2014)
pre-trained weights as well as the default ADA settings were used. A
minimum Frechet Inception Distance (FID) of 19.09 was achieved at
880 steps, using respective weights generation of 4000 synthetic images
using the seeds 0 − 3999.

Synthetic images were then pseudo-labelled using the previously
created baseline ensemble, applying the post-processing procedure de-
scribed in Section 4.5.1. Synthetic images yielded as PNG were then
converted to JPEG with the same compression level as the DFUC 2022
testing set images. These, together with their pseudo-labels, were then
added to the training dataset.

Table 1 compares the proposed methods and the implementations.
All the methods deployed data augmentation and pre-trained models.
Various post-processing techniques were used to produce the final
results, with 3 teams using Test Time Augmentation (TTA) and two
using ensemble approaches.

5. Results

5.1. Yllab results

Table 2 shows the results of five team Yllab submissions during
the final testing phase. We experiment with different deep supervision
and TTA methods to improve the performance of our model. There are
two deep supervision losses, called Deep1 and Deep2, and a boundary
loss, called Boundary. With the addition of deep supervision losses,
boundary loss, and the horizontal flip with a vertical flip TTA method,
HarDNet-DFUS achieved 0.7287 mean DSC and ranked first among all
teams.

Table 3
The performance of LkRobotAILab’s model in the final testing phase of DFUC 2022.

Model Dice Jaccard

OCRNet+HRNet-48 0.7057 0.6028
OCRNet+ConvNeXt-XL 0.7219 0.6194
OCRNet+ConvNeXt-XL+Edge-loss 0.7226 0.6207
OCRNet+ConvNeXt-XL+Edge-loss+TAa 0.7280 0.6276

a Includes TTA and multi-scale testing.

Table 4
Performance of different models trained by team AGal-
dran on a variety of loss functions on the DFUC 2022
testing set.

Model + Loss Function DSC

TTA 1: No TTA 72.33
TTA 2: Rotation 15◦ 72.40
TTA 3: Colour Jittering 72.56
TTA 4: Horizontal Flip 72.61
TTA 5: Horizontal Flip+Colour Jittering 72.63

5.2. LkRobotAILab results

In Table 3, the ablation study of the improvement of our method is
shown. By using a robust backbone, adding edge loss, and using several
TTA methods, our solution achieved 0.7280 (rank 2) mean DSC and
0.6276 (rank 1) mean Jaccard during the testing phase.

5.3. AGaldran results

The analysis of this team was guided towards understanding which
loss function, within a set of five candidates, was more capable of
dealing with disease-free images. The considered candidates were the
standard Cross-Entropy (CE, BCE) and DSC loss (Dice), together with a
series of three different combinations, namely: adding them (BCE+Dice),
linearly interpolating from CE to DSC during training (BCE→Dice), and
training for 90% of the epochs with BCEand then switching to DSC
(BCE⇝Dice).

Internal cross-validation results indicated that BCE+Dice and
BCE⇝Dice could achieve high performance when evaluated on images
that would always contain ulcers, which composed the original training
set. However, by assessing performance upon submission to the public
validation set (which contained lesion-free samples) during model
development, we found that this trend was reverted and the CE loss
BCEresulted in highest performance, whereas models trained minimis-
ing BCE+Dice and BCE⇝Dice, as well as Dice, resulted in a drastic
degradation in DSC. Once the BCE loss was adopted as the best solu-
tion, a ResNeXt-101 encoder coupled with a Feature-Pyramid-Network
was trained and corresponding segmentation results were submitted
using the hidden test set. Several post-processing steps were tested to
ascertain which was the most appropriate TTA scheme, considering
several combinations: (1) no TTA, (2) only flip image horizontally, (3)
only Rotate the image 15◦, (4) only colour jittering, (5) flip image and
colour jittering. The results shown in Table 4 indicate that no extreme
differences in performance occurred, although the last combination was
+0.30 DSC which indicates superior performance compared to not using
TTA at all, which can be considered as a relevant difference since the
winner of the challenge was +0.24 DSC over our approach.
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Table 5
The results of submissions for team ADAR-LAB after
the final testing phase.

Model DSC

None 0.7270
focal loss 0.7280
focal loss + multi-scale 0.7285

Table 6
Team FHDO results for baseline and extended model ensembles, best results per
challenge phase are highlighted.

Ensemble Post-proc. Dice Jaccard FNE FPE

Submissions for validation set

Baseline Yes 0.6895 0.5880 0.2693 0.2493
Extended Yes 0.6971 0.5974 0.2578 0.2466

Final submissions for testing set

Extended No 0.7169 0.6130 0.2453 0.2145
Extended Yes 0.7136 0.6086 0.2470 0.2195

5.4. ADAR-LAB results

In the ablation study, we obtained experiment results of the methods
we applied in this challenge with fine-tuned parameters after the final
testing phase, which resulted in a DSC of 0.7270 on the testing dataset.
Then, we gradually introduced a number of common methods, and the
results are shown in Table 5. After adding focal loss to our loss function,
there was an improvement of 0.001 in DSC. Training the model with
randomly resized images further improved DSC by 0.0005.

5.5. FHDO team results

Synthetic DFU representations generated by the unconditional Style-
GAN2+ADA model showed an overall good quality, in terms of realism,
and a broad variety. Examples are shown in the left column of Fig. 7.
Representations of feet mostly ranged from anatomically unobtrusive
and presumably healthy feet with absence of DFUs, up to malformed
or partially amputated feet with highly diverse DFU representations.
Anatomically implausible representations of feet were also generated,
e.g., highly elongated body parts or multiple extra-toes. However, such
examples constituted the minority of cases. DFU representations ranged
from small and early stage wounds, over medium-sized and well demar-
cated areas, up to large-sized areas with complex tissue composition.
All three main tissue types, granulation, slough, and necrosis, were
present either uniformly, or as part of tissue combinations. Wound
bed depths ranged from deep hole-like, over shallow, up to protruded
hypergranulation-like manifestations. Common accompanying symp-
toms such as rhagades, macerated wound borders, hyperkeratotic or
flaking skin layers, and reddened or discoloured peri-wound areas
were generated as well, showing high levels of detail. Backgrounds
typically showed white cloth, blue foil, or mixes of both which are
characteristic for the DFUC 2022 dataset. Pseudo-ground truth for
synthetic images created by the baseline model ensemble showed good
levels of consistency. Examples of binary masks are shown in the middle
column of Fig. 7 with corresponding image cutouts in the right column.
Further details and numerous samples of synthetic images with created
pseudo-ground truth are reported in Brüngel et al. (2023).

Performance of the baseline and extended model ensembles are
reported in Table 6. The upper part reports results on the validation
set, the lower part results on the testing set. During the validation
phase, both the baseline and the extended ensemble were evaluated,
with both using the described post-processing procedure. In this phase,
the extended model ensemble performed consistently better than the
baseline model ensemble, achieving notably higher DSC and Jaccard
values as well as notably lower FNE and FPE. During the testing
phase, only the extended model ensemble was used for submissions,

Fig. 7. Examples of generated synthetic images with pseudo-labels predicted by the
baseline ensemble, as generated by team FHDO: The first row shows a presumably
healthy foot, the second row shows multiple small-sized and shallow DFU instances, the
third row shows a medium-sized and well-demarcated DFU with pronounced maceration
in the periwound, and the fourth row shows a large-sized DFU instance with mixed
tissue and non-uniform edges.

with and without involvement of the post-processing procedure. The
final results show that the extended model submission without post-
processing performed best, achieving a DSC of 0.7169, a Jaccard value
of 0.6130, an FNE of 0.2453, and an FPE of 0.2145. Further results of
post-challenge evaluations are reported in Brüngel et al. (2023), with
particular attention to potential overfitting in the final results.

5.6. Comparison of the best model from each method

On the final submission leaderboard, the performance of the meth-
ods from the DFUC 2022 winners with DSC values > 0.70 on non-DFU,
small, medium and large DFU regions are illustrated on Fig. 8. The
top-10 results is summarised in Table 7. Noted that group ‘‘seoyoung’’
did not submit a paper to describe their method, therefore, was not
considered in the analysis. The fifth place was awarded to FDHO Team.
The number of test set submissions for the top-5 teams was as follows:
Yllab (𝑛 = 5), LkRobotAILab (𝑛 = 4), AGaldran (𝑛 = 5), ADAR-Lab
(𝑛 = 5), FHDO (𝑛 = 5). The mean DSC and Jaccard values for the top-5
teams are 0.7261 and 0.6251 respectively, with a standard deviation of
0.0026 and 0.0027 respectively.

6. Comprehensive analysis

In this section, we demonstrate the ability of the networks by per-
forming a comprehensive analysis of the segmentation results. First, we
analyse the effect of ensemble methods in DFU segmentation; Second,
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Fig. 8. Comparison of a selection of prediction results from participating teams overlayed on the test images.

we perform statistical analysis on the winning teams’ results; Third, we
implement region-based measurement; and finally, we investigate the
relationship between DSC values and region sizes.

6.1. Ensemble methods

A common approach to improve segmentation metrics is to ensem-
ble a series of the best performing models, with each model capable of
identifying alternative features. For instance, some models may exhibit
superior performance in the identification of infected regions, while
other models may show better performance in segmenting early stage
DFU. Additionally, using an ensemble of models can help to avoid false
detections by allowing the networks to vote on active regions which can
create a more robust system. In this section, we analyse the ability of
the networks to cohesively segment DFU regions.

We perform an analysis of three different ensemble types for seg-
mentation, namely:

• Union: if one method indicates that the pixel is DFU then the
ensemble will classify as DFU

• Voting: if half or more of the methods indicate that the pixel is
DFU then the ensemble will classify as DFU

• Intersection: if all methods voted the pixel as DFU, then the
ensemble will classify it as DFU

For the ensemble analysis, we take the best-performing networks
from the DFUC 2022 winners with DSC values > 0.70, and post-process
their results with the ensemble methods. We received the binary mask
predictions from Yllab (Liao et al., 2023), LkRobotAILab (Yi et al.,
2023), AGaldran (Galdran et al., 2023), ADAR-LAB (Chen et al., 2023)
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Table 7
The top-10 participating teams for DFUC 2022, starting with the best DSC value.† =
higher score is better; ⊎ = lower score is better. bold indicates the best overall result.

Team Metrics

Dice † Jaccard † FPE ⊎ FNE ⊎

Yllab 0.7287 0.6252 0.2048 0.2341
LkRobotAILab 0.7280 0.6276 0.2154 0.2261
AGaldran 0.7263 0.6273 0.2262 0.2210
Adar-Lab 0.7254 0.6245 0.1847 0.2582
seoyoung 0.7220 0.6208 0.1925 0.2584
FHDO 0.7169 0.6130 0.214 0.2453
GP_2022 0.6986 0.5921 0.2065 0.2778
DGUT-XP 0.6984 0.5945 0.2523 0.2379
IISlab 0.6974 0.5926 0.2163 0.2734
AGH_MVG 0.6725 0.5690 0.2555 0.2830

Fig. 9. The results of ensemble of the winning team’s images with different cases,
Intersection (left), Union (middle) and Vote (Right).

Table 8
Results of each of the ensemble methods. Italics indicates the best performing method
for each ensemble method, and bold indicates the best overall metric value.

Ensemble Method Metrics

DSC Jaccard FPE FNE

Intersect1 0.7264 0.6263 0.2440 0.2025
Intersect2 0.7202 0.6209 0.2673 0.1907
Intersect3 0.7179 0.6191 0.2757 0.1874
Intersect4 0.7122 0.6134 0.2866 0.1848

Union1 0.7302 0.6270 0.1763 0.2556
Union2 0.7279 0.6248 0.1654 0.2677
Union3 0.7263 0.6231 0.1544 0.2771
Union4 0.7196 0.6146 0.1477 0.2925

Vote1 0.7264 0.6263 0.2440 0.2025
Vote2 0.7318 0.6320 0.2133 0.2224
Vote3 0.7299 0.6307 0.2285 0.2128
Vote4 0.7322 0.6324 0.2099 0.2253

and FHDO (Brüngel et al., 2023). We then process the method with the
3 techniques and visualise the results (see Fig. 9).

Table 8 illustrates how each method optimises separate metrics. In
the case of intersection, we see a significant reduction of FNE with
the highest score equal to the lowest on the next ensemble method,
highlighting how the removal of none intersecting pixels highlights
core DFU related features. Whereas, in the case of FPE, Union reduces
the FPE for all ensemble methods below that of other ensemble meth-
ods, showing that the different methods highlight different sections
and features of the DFU regions. Finally, the voting system shows
the best performance for DSC and Jaccard, highlighting the ability of
the combined approach to improve prediction overlap. Additionally,
we observe that the values improve with each additional method,
highlighting that the diversity in the combined network predictions
allow for significantly improved segmentation. In-contrast, the opposite
correlation is also demonstrated — if the ensemble improves FPE then
a reduction in FNE occurs.

While ensembling the predictions of the top teams appears to
demonstrate marginal improvements to the results, we perform further
analysis on different test sets. Fig. 10 illustrates the mean DSC of
winning teams and ensemble methods on 3 test sets based on the ratio

Table 9
Comparison of segmentation results using region-based measurement with a threshold
of 𝐷𝑆𝐶 > 0.5. bold indicates the best overall result.

Methods Metrics

Accuracy Recall Precision F1-Score

Yllab 0.6222 0.7890 0.7445 0.7661
LkRobotAILab 0.6473 0.7925 0.7770 0.7847
AGaldran 0.6706 0.7783 0.8265 0.8017
Adar-Lab 0.6566 0.7796 0.8040 0.7916
FDHO 0.6108 0.7961 0.7218 0.7572

of the DFU area to the image area. We split the test set based on
the ratio values in the range of (0,0.01), (0.01,0.05), and (0.05,0.10).
We observe that the algorithms are less accurate in segmenting small
DFU regions, but gradually improve as DFU areas increase. The union
ensemble method demonstrated the worst performance for small DFU
areas. Overall, this analysis demonstrates that the most difficult cases
for DFU segmentation are images with small DFU regions, in particular
for those with a ratio < 0.01.

6.2. Statistical analysis

We conduct an analysis based on DSC values, but not on IoU as it
is correlated with DSC. First, we determine if the multivariate sample
means are equal by performing a MANOVA. MANOVA was selected as it
improves on the capabilities of analysis of variance (ANOVA) by using
multiple dependent variables simultaneously.

Fig. 11 illustrates the boxplots determined using test set DSC values
for the best performing teams. Based on ANOVA we found that there
were no significant differences between the mean DSC values obtained
for each method (𝑝-value =0.42).

We observed a strong linear correlation between the test DSC values
obtained by the best performing teams, with pairwise Pearson corre-
lation coefficients equal to approximately 0.85 (𝑝-values<0.001). In
particular, Fig. 12 illustrates the relationship between the DSC values
obtained for the Yllab and LkRobotAILab teams. Although these two
methods achieved similar DSC values, Fig. 12 shows that the networks
misdetected different DFU images (DSC values of 0). This finding
motivates the utilisation of ensemble methods in the previous sections
since there were cases correctly segmented by one of the methods, but
missed by the other.

6.3. Region-based analysis

The metrics used for DFUC 2022 are image-based, rather than
region-based, i.e. the accuracy of each segment of the ulcer. However,
in medical practice, the measure of true positives and false positives,
based on each region, are used to measure the reliability of any com-
puter aided tools. Therefore, we complete an analysis on region-based
analysis. A region is deemed to be a true positive if the DSC value of
the ground truth region and the predicted region is above a certain
threshold. We compare the performance by calculating the following
performance metrics: accuracy, recall, precision and F1-score.

The challenge methods segmented different numbers of regions,
with Yllab predicting 2380 regions, LkRobotAILab predicting 2291
regions, AGaldran predicting 2115 regions, Adar-Lab predicting 2178
regions, and FHDO predicting 2477 regions. Fig. 13 shows the rela-
tionship between the metrics and the DSC threshold values. In addition,
Table 9 compares the obtained results using region-based measurement
for the threshold of 𝐷𝑆𝐶 > 0.5, which corresponds to the case where
at least half of the predicted region overlaps with the ground truth
segmentation mask. It is noted that AGaldran team achieved higher
results compared to the other methods, especially with respect to
precision.
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Fig. 10. Boxplots comparing the DSC values of the winning teams and ensemble methods on 3 test sets with different ratios of DFU area to image area, with (a) ratio in the
range of (0,0.01); (b) ratio in the range of (0.01,0.05); and (c) ratio in the range of (0.05,0.10).
Note: 1st–5th indicate the 5 winning teams, ∩, ∪ and Vote indicates ensemble methods of intersection, union and vote, respectively.

Fig. 11. Boxplots presenting the test set DSC values achieved by the higher performing
teams in DFUC 2022.

Fig. 12. Graph presenting the linear relationship between the DSC values obtained
for the two higher performing teams in DFUC 2022 (Yllab and LkRobotAILab) with a
Pearson linear correlation coefficient equal to 0.87.

6.4. Region size analysis

Previous studies reported that the region based loss functions (e.g.
those utilising DSC) induce a bias towards a specific region size (Maier-
Hein et al., 2020b). To assess this phenomenon with respect to the
DFUC 2022 winner test set results, we investigated the relationship
between DSC values and region sizes. First, we performed correlation
analysis and found positive and significant (𝑝-values<0.001) correla-
tion between the DSC values and region sizes, with Spearman’s rank
correlation coefficients equal to 0.43, 0.40, 0.42, 0.43 and 0.40 for
Yllab, LKRobotAILab, AGaldran, Adar-Lab and FHDO team, respec-
tively. Fig. 14a) illustrates the relationship between the test DSC values

Fig. 13. Results of the region based analysis for different DSC threshold values.

and region sizes obtained for the network from the Yllab team. For
visualisation, region sizes were normalised by the maximal region
size and logarithmized. Second, to further highlight the relationship
between the test DSC values and region sizes, we split the area of the
instance regions to three equal groups, small, medium and large, based
on percentiles. For example, the small group included cases with the
region area below the 33th percentile. Boxplots presenting the DSC val-
ues for each group for the Yllab method are shown in Fig. 14(b). In this
case, there were 99, 53 and 17 cases with DSC values equal to 0 for the
small, medium and large group, respectively. Moreover, ANOVA and
Tukey’s honestly significant difference test indicated that the mean DSC
values were significantly different (𝑝-values<0.001) between all three
size categories. We repeated the ANOVA analysis and obtained similar
findings for the remaining four segmentation networks, indicating that
all investigated methods underperformed in the case of smaller regions
with respect to the DSC metric.

7. Research impact and future work

The DFU segmentation dataset which has been shared with the
research community as part of the DFUC 2022 represents the largest
publicly available chronic wound dataset to date. As such, this present
challenge report represents the latest insights into the field. Prior
works focused on experimenting with smaller datasets at lower image
resolutions. Higher resolution DFU wound images present more fea-
tures and a correspondingly more challenging task. The research works
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Fig. 14. The relationship (a) between the DSC values and region sizes for the
segmentation network from the Yllab team. Additionally, we split (b) the area of the
instance regions to three equal groups: small, medium and large. Results indicate that
the segmentation network underperformed in the case of the smaller regions in terms
of DSC.

detailed in this challenge report provide key insights into the challenges
inherent in chronic wound segmentation. The results presented in the
present paper highlight the difficulties that underpin the current state
of research in the field, particularly in the segmentation of smaller DFU
wounds. Chronic wounds can be highly visually complex in nature,
especially larger, more developed cases. The range in visual complexity
depending on wound development and healing status means that model
accuracy is dependent on the model’s ability to identify a large range
of varied and complex features. In part, such feature variation may be
responsible for the challenges in chronic wound segmentation, which
may be revealed through the sharing of more diverse datasets and the
use of higher resolution images. Future work should focus on a greater
understanding of the data used to train segmentation models. A lack
of thorough data understanding may be one of the limiting factors in
the field. Datasets collected from a single hospital may mean that there
are same-patient cases present across training and testing sets, albeit
from different visits. Identification of small wounds may prove to be
a key facet of fully automated early monitoring systems, which could
help patients to seek medical assistance before wounds become more
serious. To promote continued research in the field, both the DFUC
2022 dataset and the Grand Challenge platform will continue to be
made publicly available after the challenge deadline. It is our intent to
conduct further chronic wound related challenges in the near future.

8. Conclusion

DFUC 2022 was conducted to support innovation in computer algo-
rithm development, encourage data sharing, and enable reproducible
and multidisciplinary research. Amongst the 26 participating teams,
the winning teams set the baselines for this new segmentation dataset,
with a DSC of 0.7287. This paper provides an extensive post-challenge
analysis. By conducting ensemble methods, we observed marginal per-
formance improvements. The statistical analysis showed that there are

no significant differences between the top-2 best performers. We pro-
vide further analysis based on region-based segmentation performance,
with findings showing a significant positive correlation between the
DSC values and DFU region sizes. When we categorised the region
sizes to small, medium and large, we found the mean DSC values were
significantly different for all categories. Our analysis indicates that
the methods proposed by the winning teams underperformed in the
segmentation of small DFU regions.
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