83 research outputs found
Transport Dynamics of Broad Resonances
The propagation of short life time particles with consequently broad mass
width are discussed in the context of transport descriptions. In the first part
some known properties of finite life time particles such as resonances are
reviewed and discussed at the example of the -meson. Grave deficiencies
in some of the transport treatment of broad resonances are disclosed and
quantified. The second part addresses the derivation of transport equations
which permit to account for the damping width of the particles. Baym's
-derivable method is used to derive a self-consistent and conserving
scheme, which fulfils detailed balance relations even in the case of particles
with broad mass distributions. For this scheme a conserved energy-momentum
tensor can be constructed. Furthermore, a kinetic entropy can be derived which
besides the standard quasi-particle part also includes contributions from
fluctuations.Comment: Talk presented on the Erice School on Nuclear Physics, Erice, Italy,
Sept. 17 - 25, 1998 to be published in Progress in Particle and Nuclear
Physics, Vol. 42 (10 pages, 5 eps-figures
Continuous Decoupling of Dynamically Expanding Systems
The question of decoupling and freeze-out is reinvestigated and analysed in
terms of transparent semi-classical decoupling formulae, which provide a smooth
decoupling in time both, for single and two particle inclusive spectra. They
generalise frequently employed instantaneous freeze-out procedures and provide
simple relations between the damping width and the duration of the decoupling
process. The implications on physical phenomena arising from the expansion and
decay dynamics of the highly compressed hadronic matter generated in high
energy nuclear collisions are discussed.Comment: The paper is significantly revised concentrating on the physics
discussion, thereby including material that appeared during the revision
stage. The formal derivations are deferred to a forthcoming paper. 20 pages,
2 Figures, Nucl. Phys. A in pres
Trust-Based Protection of Software Component Users and Designers
Abstract. Software component technology supports the cost-effective design of applications suited to the particular needs of the application owners. This design method, however, causes two new security risks. At first, a malicious component may attack the application incorporating it. At second, an application owner may incriminate a component designer falsely for any damage in his application which in reality was caused by somebody else. The first risk is addressed by security wrappers control-ling the behavior at the component interface at runtime and enforcing certain security policies in order to protect the other components of the application against attacks from the monitored component. Moreover, we use trust management to reduce the significant performance overhead of the security wrappers. Here, the kind and intensity of monitoring a com-ponent is adjusted according to the experience of other users with this component. Therefore a so-called trust information service collects posi-tive and negative experience reports of the component from various users
Delays Associated with Elementary Processes in Nuclear Reaction Simulations
Scatterings, particularly those involving resonances, and other elementary
processes do not happen instantaneously. In the context of semiclassical
nuclear reaction simulations, we consider delays associated with an interaction
for incident quantum wave-packets. As a consequence, we express delays
associated with elementary processes in terms of elements of the scattering
matrix and phase shifts for elastic scattering. We show that, to within the
second order in density, the simulation must account for delays in scattering
consistently with the mean field in order to properly model thermodynamic
properties such as pressure and free-energy density. The delays associated with
nucleon-nucleon and pion-nucleon scattering in free space are analysed with
their nontrivial energy dependence. Finally, an example of s-channel scattering
of massless partons is studied, and scattering schemes in nuclear reaction
simulations are investigated in the context of scattering delays.Comment: 45 pages, 5 uuencoded Postscript figure
A Phase II Trial of AZD6244 (Selumetinib, ARRY-142886), an Oral MEK1/2 Inhibitor, in Relapsed/Refractory Multiple Myeloma
AZD6244 is a MEK1/2 inhibitor with significant preclinical activity in multiple myeloma (MM) cells. This phase 2 study used a two-stage Simon design to determine the AZD6244 response rate in patients with relapsed or refractory MM
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
Developing a collaborative agenda for humanities and social scientific research on laboratory animal science and welfare.
Improving laboratory animal science and welfare requires both new scientific research and insights from enquiry in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the â3Rsâ), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they frame questions, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including around: international harmonisation, openness and public engagement, âcultures of careâ, harm-benefit analysis and the future of the 3Rs. The process underlines the value of interdisciplinary exchange for improving mutual understanding of different research cultures and identifies ways of enhancing the effectiveness of future research at the interface between the humanities, social sciences, science and science policy
The Planetary Nebula System of M33
We report the results of a photometric and spectroscopic survey for planetary
nebulae (PNe) in the Local Group spiral galaxy M33. We use our sample of 152
PNe to derive an [O III] planetary nebula luminosity function (PNLF) distance
of (m-M)_0 = 24.86^+0.07-0.11 (0.94^+0.03-0.05 Mpc). Although this value is ~
15% larger than the galaxy's Cepheid distance, the discrepancy likely arises
from differing assumptions about the system's internal extinction. Our
photometry (which extends >3 mag down the PNLF), also reveals that the
faint-end of M33's PN luminosity function is non-monotonic, with an inflection
point ~2 mag below the PNLF cutoff. We argue that this feature is due to the
galaxy's large population of high core-mass planetaries, and that its amplitude
may eventually be useful as a diagnostic for studies of stellar populations.
Fiber-coupled spectroscopy of 140 of the PN candidates confirms that M33's PN
population rotates along with the old disk, with a small asymmetric drift of \~
10km/s. Remarkably, the population's line-of-sight velocity dispersion varies
little over ~4 optical disk scale lengths, with sigma_{rad}~20km/s. We show
that this is due to a combination of factors, including a decline in the radial
component of the velocity ellipsoid at small galactocentric radii, and a
gradient in the ratio of the vertical to radial velocity dispersion. We use our
data to show that the mass scale length of M33's disk is ~2.3 times larger than
that of the system's IR luminosity and that the disk's V-band mass-to-light
ratio changes from M/L_V ~0.3 in the galaxy's inner regions to M/L_V ~2.0 at ~9
kpc. Models in which the dark matter is distributed in the plane of the galaxy
are excluded by our data. (abridged)Comment: 45 pages, including 12 figures (some with reduced resolution);
accepted for publication in the Astrophysical Journa
In vitro models of medulloblastoma: choosing the right tool for the job
The recently-defined four molecular subgroups of medulloblastoma have required updating of our understanding of in vitro models to include molecular classification and risk stratification features from clinical practice. This review seeks to build a more comprehensive picture of the in vitro systems available for modelling medulloblastoma.
The subtype classification and molecular characterisation for over 40 medulloblastoma cell-lines has been compiled, making it possible to identify the strengths and weaknesses in current model systems. Less than half (18/44) of established medulloblastoma cell-lines have been subgrouped. The majority of the subgrouped cell-lines (11/18) are Group 3 with MYC-amplification. SHH cell-lines are the next most common (4/18), half of which exhibit TP53 mutation. WNT and Group 4 subgroups, accounting for 50% of patients, remain underrepresented with 1 and 2 cell-lines respectively.
In vitro modelling relies not only on incorporating appropriate tumour cells, but also on using systems with the relevant tissue architecture and phenotype as well as normal tissues. Novel ways of improving the clinical relevance of in vitro models are reviewed, focusing on 3D cell culture, extracellular matrix, co-cultures with normal cells and organotypic slices. This paper champions the establishment of a collaborative online-database and linked cell-bank to catalyse preclinical medulloblastoma research
- âŠ