3 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Diagnosis of T1 colorectal cancer in pedunculated polyps in daily clinical practice : a multicenter study

    No full text
    T1 colorectal cancer can be mimicked by pseudo-invasion in pedunculated polyps. British guidelines are currently one of the few which recommend diagnostic confirmation of T1 colorectal cancer by a second pathologist. The aim of this study was to provide insights into the accuracy of histological diagnosis of pedunculated T1 colorectal cancer in daily clinical practice. A sample of 128 cases diagnosed as pedunculated T1 colorectal cancer between 2000 and 2014 from 10 Dutch hospitals was selected for histological review. Firstly, two Dutch expert gastrointestinal pathologists reviewed all hematoxylin-eosin stained slides. In 20 cases the diagnosis T1 colorectal cancer was not confirmed (20/128; 16%). The discordant cases were subsequently discussed with a third Dutch gastrointestinal pathologist and a consensus diagnosis was agreed. The revised diagnoses were pseudo-invasion in 10 cases (10/128; 8%), high-grade dysplasia in 4 cases (4/128; 3%), and equivocal in 6 cases (6/128; 5%). To further validate the consensus diagnosis, the discordant cases were reviewed by an independent expert pathologist from the United Kingdom. A total of 39 cases were reviewed blindly including the 20 cases with a revised diagnosis and 19 control cases where the Dutch expert panel agreed with the original reporting pathologists diagnosis. In 19 of the 20 cases with a revised diagnosis the British pathologist agreed that T1 colorectal cancer could not be confirmed. Additionally, amongst the 19 control cases the British pathologist was unable to confirm T1 colorectal cancer in a further 4 cases and was equivocal in 3 cases. In conclusion, both generalist and expert pathologists experience diagnostic difficulty distinguishing pseudo-invasion and high-grade dysplasia from T1 colorectal cancer. In order to prevent overtreatment, review of the histology of pedunculated T1 colorectal cancers by a second pathologist should be considered with discussion of these cases at a multidisciplinary meeting.Modern Pathology advance online publication, 7 October 2016; doi:10.1038/modpathol.2016.165
    corecore