678 research outputs found

    High CO2 concentration and iron availability determine the metabolic inventory in an Emiliania huxleyi-dominated phytoplankton community

    Get PDF
    Ocean acidification (OA), a consequence of anthropogenic carbon dioxide (CO2) emissions, strongly impacts marine ecosystems. OA also influences iron (Fe) solubility, affecting biogeochemical and ecological processes. We investigated the interactive effects of CO2 and Fe availability on the metabolome response of a natural phytoplankton community. Using mesocosms we exposed phytoplankton to ambient (390 ÎŒatm) or future CO2 levels predicted for the year 2100 (900 ÎŒatm), combined with ambient (4.5 nM) or high (12 nM) dissolved iron (dFe). By integrating over the whole phytoplankton community, we assigned functional changes based on altered metabolite concentrations. Our study revealed the complexity of phytoplankton metabolism. Metabolic profiles showed three stages in response to treatments and phytoplankton dynamics. Metabolome changes were related to the plankton group contributing respective metabolites, explaining bloom decline and community succession. CO2 and Fe affected metabolic profiles. Most saccharides, fatty acids, amino acids and many sterols significantly correlated with the high dFe treatment at ambient pCO2. High CO2 lowered the abundance of many metabolites irrespective of Fe. However, sugar alcohols accumulated, indicating potential stress. We demonstrate that not only altered species composition but also changes in the metabolic landscape affecting the plankton community may change as a consequence of future high-CO2 oceans.publishedVersio

    GRB 000911: Evidence for an Associated Supernova?

    Get PDF
    We present photometric and spectroscopic observations of the late afterglow of GRB 000911. We detect a moderately significant re-brightening in the R, I and J lightcurves, associated with a sizable reddening of the spectrum. This can be explained through the presence of an underlying supernova, outshining the afterglow ~ 30 days after the burst event

    The short GRB070707 afterglow and its very faint host galaxy

    Full text link
    We present the results from an ESO/VLT campaign aimed at studying the afterglow properties of the short/hard gamma ray burst GRB 070707. Observations were carried out at ten different epochs from ~0.5 to ~80 days after the event. The optical flux decayed steeply with a power-law decay index greater than 3, later levelling off at R~27.3 mag; this is likely the emission level of the host galaxy, the faintest yet detected for a short GRB. Spectroscopic observations did not reveal any line features/edges that could unambiguously pinpoint the GRB redshift, but set a limit z < 3.6. In the range of allowed redshifts, the host has a low luminosity, comparable to that of long-duration GRBs. The existence of such faint host galaxies suggests caution when associating short GRBs with bright, offset galaxies, where the true host might just be too dim for detection. The steepness of the decay of the optical afterglow of GRB 070707 challenges external shock models for the optical afterglow of short/hard GRBs. We argue that this behaviour might results from prolonged activity of the central engine or require alternative scenarios.Comment: 6 pages, 5 figures, accepted by A&

    The Use of Sentinel-2 for Chlorophyll-a Spatial Dynamics Assessment: A Comparative Study on Different Lakes in Northern Germany

    Get PDF
    Eutrophication of inland waters is an environmental issue that is becoming more common with climatic variability. Monitoring of this aquatic problem is commonly based on the chlorophyll-a concentration monitored by routine sampling with limited temporal and spatial coverage. Remote sensing data can be used to improve monitoring, especially after the launch of the MultiSpectral Instrument (MSI) on Sentinel-2. In this study, we compared the estimation of chlorophyll-a (chl-a) from different bio-optical algorithms using hyperspectral proximal remote sensing measurements, from simulated MSI responses and from an MSI image. For the satellite image, we also compare different atmospheric corrections routines before the comparison of different bio-optical algorithms. We used in situ data collected in 2019 from 97 sampling points across 19 different lakes. The atmospheric correction assessment showed that the performances of the routines varied for each spectral band. Therefore, we selected C2X, which performed best for bands 4 (root mean square error—RMSE = 0.003), 5 (RMSE = 0.004) and 6 (RMSE = 0.002), which are usually used for the estimation of chl-a. Considering all samples from the 19 lakes, the best performing chl-a algorithm and calibration achieved a RMSE of 16.97 mg/m3. When we consider only one lake chain composed of meso-to-eutrophic lakes, the performance improved (RMSE: 10.97 mg/m3). This shows that for the studied meso-to-eutrophic waters, we can reliably estimate chl-a concentration, whereas for oligotrophic waters, further research is needed. The assessment of chl-a from space allows us to assess spatial dynamics of the environment, which can be important for the management of water resources. However, to have an accurate product, similar optical water types are important for the overall performance of the bio-optical algorithm

    Changes in food characteristics reveal indirect effects of lake browning on zooplankton performance

    Get PDF
    Browning caused by colored dissolved organic matter is predicted to have large effects on aquatic ecosystems. However, there is limited experimental evidence about direct and indirect effects of browning on zooplankton in complex field settings. We used a combination of an ecosystem‐scale enclosure experiment and laboratory incubations to test how prolonged browning affects physiological and life‐history traits of the water flea Daphnia longispina, a key species in lake food webs, and whether any such effects are reversible. Daphnids and water were collected from enclosures in a deep clear‐water lake, where the natural plankton community had been exposed for 10 weeks to browning or to control conditions in clear water. Daphnid abundance was much lower in the brown than in the clear enclosure. Surprisingly, however, daphnids continuously kept in brown enclosure water in the laboratory showed increased metabolic performance and survival, and also produced more offspring than daphnids kept in clear enclosure water. This outcome was related to more and higher‐quality seston in brown compared to clear water. Moreover, daphnids transferred from clear to brown water or vice versa adjusted their nucleic acid and protein contents, as indicators of physiological state, to similar levels as individuals previously exposed to the respective recipient environment, indicating immediate and reversible browning effects on metabolic performance. These results demonstrate the importance of conducting experiments in settings that capture both indirect effects (i.e., emerging from species interactions in communities) and direct effects on individuals for assessing impacts of browning and other environmental changes on lakes.BMBF, 033L041B, Verbundprojekt: NITROLIMIT - Stickstofflimitation in BinnengewĂ€ssern - ist Stickstoffreduktion ökologisch sinnvoll und wirtschaftlich vertretbar? Teilprojekt: VerfĂŒgbarkeit von gelösten organischen N-Verbindungen, Produktion von Lachgas und StickstoffeintrĂ€geEC/FP7/603378/EU/Managing Aquatic ecosystems and water Resources under multiple Stress/MAR

    Effects of experimental warming on biodiversity depend on ecosystem type and local species composition

    Get PDF
    Climatic warming is a primary driver of change in ecosystems worldwide. Here, we synthesize responses of species richness and evenness from 187 experimental warming studies in a quantitative meta-analysis. We asked 1) whether effects of warming on diversity were detectable and consistent across terrestrial, freshwater and marine ecosystems, 2) if effects on diversity correlated with intensity, duration, and experimental unit size of temperature change manipulations, and 3) whether these experimental effects on diversity interacted with ecosystem types. Using multilevel mixed linear models and model averaging, we also tested the relative importance of variables that described uncontrolled environmental variation and attributes of experimental units. Overall, experimental warming reduced richness across ecosystems (mean log-response ratio = -0.091, 95% bootstrapped CI: -0.13, -0.05) representing an 8.9% decline relative to ambient temperature treatments. Richness did not change in response to warming in freshwater systems, but was more strongly negative in terrestrial (-11.8%) and marine (-10.5%) experiments. In contrast, warming impacts on evenness were neutral overall and in aquatic systems, but weakly negative on land (7.6%). Intensity and duration of experimental warming did not explain variation in diversity responses, but negative effects on richness were stronger in smaller experimental units, particularly in marine systems. Model-averaged parameter estimation confirmed these main effects while accounting for variation in latitude, ambient temperature at the sites of manipulations, venue (field versus lab), community trophic type, and whether experiments were open or closed to colonization. These analyses synthesize extensive experimental evidence showing declines in local richness with increased temperature, particularly in terrestrial and marine communities. However, the more variable effects of warming on evenness were better explained by the random effect of site identity, suggesting that effects on species' relative abundances were contingent on local species composition.</p

    Integrating chytrid fungal parasites into plankton ecology: research gaps and needs

    Get PDF
    Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co‐evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology

    The optical afterglows and host galaxies of three short/hard gamma-ray bursts

    Full text link
    Short GRBs are commonly thought to originate from the merging of double compact object binaries but direct evidence for this scenario is still missing. Optical observations of short GRBs allow us to measure redshifts, firmly identify host galaxies, characterize their properties, and accurately localize GRBs within them. Multiwavelength observations of GRB afterglows provide useful information on the emission mechanisms at work. These are all key issues that allow one to discriminate among different models of these elusive events. We carried out photometric observations of the short/hard GRB 051227, GRB 061006, and GRB 071227 with the ESO-VLT starting from several hours after the explosion down to the host galaxy level several days later. For GRB 061006 and GRB 071227 we also obtained spectroscopic observations of the host galaxy. We compared the results obtained from our optical observations with the available X-ray data of these bursts. For all the three above bursts, we discovered optical afterglows and firmly identified their host galaxies. About half a day after the burst, the optical afterglows of GRB 051227 and GRB 061006 present a decay significatly steeper than in the X-rays. In the case of GRB 051227, the optical decay is so steep that it likely indicates different emission mechanisms in the two wavelengths ranges. The three hosts are blue, star forming galaxies at moderate redshifts and with metallicities comparable to the Solar one. The projected offsets of the optical afterglows from their host galaxies centers span a wide range, but all afterglows lie within the light of their hosts and present evidence for local absorption in their X-ray spectra. We discuss our findings in light of the current models of short GRB progenitors.Comment: Accepted for publication by A&A. 11 pages, 9 figures; v2: minor changes and new version of Fig.

    Design and implementation of an illumination system to mimic skyglow at ecosystem level in a large-scale lake enclosure facility

    Get PDF
    Light pollution is an environmental stressor of global extent that is growing exponentially in area and intensity. Artificial skyglow, a form of light pollution with large range, is hypothesized to have environmental impact at ecosystem level. However, testing the impact of skyglow at large scales and in a controlled fashion under in situ conditions has remained elusive so far. Here we present the first experimental setup to mimic skyglow at ecosystem level outdoors in an aquatic environment. Spatially diffuse and homogeneous surface illumination that is adjustable between 0.01 and 10 lx, resembling rural to urban skyglow levels, was achieved with white light-emitting diodes at a large-scale lake enclosure facility. The illumination system was enabled by optical modeling with Monte-Carlo raytracing and validated by measurements. Our method can be adapted to other outdoor and indoor skyglow experiments, urgently needed to understand the impact of skyglow on ecosystems

    The optical afterglow of GRB 000911: evidence for an associated supernova?

    Get PDF
    We present photometric and spectroscopic observations of the late afterglow of GRB 000911, starting ~1 day after the burst event and lasting ~8 weeks. We detect a moderately significant re-brightening in the R, I and J lightcurves, associated with a sizable reddening of the spectrum. This can be explained through the presence of an underlying supernova, outshining the afterglow ~30 days after the burst event. Alternative explanations are discussed.Comment: 7 pages, 3 postscript figures, A&A in pres
    • 

    corecore