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Summary

Ocean acidification (OA), a consequence of anthropo-
genic carbondioxide (CO2) emissions, strongly impacts
marine ecosystems. OA also influences iron (Fe)
solubility, affecting biogeochemical and ecological pro-
cesses. We investigated the interactive effects of CO2

and Fe availability on the metabolome response of a
natural phytoplankton community. Using mesocosms
we exposed phytoplankton to ambient (390 μatm) or
future CO2 levels predicted for the year 2100 (900 μatm),
combined with ambient (4.5 nM) or high (12 nM) dis-
solved iron (dFe). By integrating over the whole phyto-
plankton community, we assigned functional changes
based on altered metabolite concentrations. Our study
revealed the complexity of phytoplankton metabolism.

Metabolic profiles showed three stages in response to
treatments and phytoplankton dynamics. Metabolome
changes were related to the plankton group contribut-
ing respective metabolites, explaining bloom decline
and community succession. CO2 and Fe affected meta-
bolic profiles. Most saccharides, fatty acids, amino
acids and many sterols significantly correlated with the
high dFe treatment at ambient pCO2. High CO2 lowered
the abundance of many metabolites irrespective of
Fe. However, sugar alcohols accumulated, indicating
potential stress. We demonstrate that not only altered
species composition but also changes in the metabolic
landscape affecting the plankton community may
change as a consequence of future high-CO2 oceans.

Introduction

Anthropogenic activities such as fossil fuel burning have
caused an increase in atmospheric carbon dioxide (CO2)
since the industrial era (see Joos and Spahni, 2008;
Tans and Keeling, 2020). The worst-case scenario, the
Representative Concentration Pathway RCP 8.5
(IPCC, 2014), projects an increase in atmospheric CO2

concentration above 1000 μatm by the end of this cen-
tury. Unfortunately, the values predicted by the RCP 8.5
match concentrations measured in the atmosphere to
date. Oceans are absorbing part of the carbon emissions
resulting in a predicted pH reduction (termed ocean acidi-
fication, OA) of 0.4 units until the end of this century
(Caldeira and Wicket, 2003). This will cause severe
impacts on biodiversity, structure and function of coastal
ecosystems (IPCC, 2019). Among the organisms most
affected by OA are some phytoplankton groups. The
increased partial pressure of gaseous CO2 (pCO2) influ-
ences the net specific growth rate, the elemental stoichi-
ometry and the physiology of phytoplankton (Engel
et al., 2005; Segovia et al., 2017). However, we still lack
a coherent theoretical and empirical foundation for a
complete understanding of how whole ecosystems will
respond to global change (Ullah et al., 2018).

Mesocosm studies allow rigorous testing of global
change impacts at the ecosystem level improving our
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understanding of ecological responses to such changes
because of their high degree of realism and predictive
potential. Hence, mesocosm experiments fill the gap
between small-scale laboratory experiments in which
reality is somewhat distorted, and open ocean observa-
tions where identifying mechanistic relationships is diffi-
cult or impossible (Stewart et al., 2013; Riebesell and
Gattuso, 2015).
Mesocosm experiments have indeed revealed that

picoeukaryotes and some nano- and micro-eukaryotes can
perform better at elevated CO2 concentrations. However,
coccolithophoresmay strongly be negatively impacted while
cyanobacteria have shown both negative and positive
responses to high CO2 (Riebesell et al., 2017; Schulz
et al., 2017; Segovia et al., 2017).
The coccolithophore Emiliania huxleyi is the most impor-

tant calcifier in the world’s oceans. Its abundance and cal-
cifying activity results in a global importance of the species
for biogeochemical cycles (Westbroek et al., 1989;
Paasche, 2002). Emiliania huxleyi regulates the exchange
of CO2 across the ocean–atmosphere interface through
the ratio of calcite precipitation to organic matter produc-
tion (the rain ratio, Rost and Riebesell, 2004). Hence, it is
crucial to understand potential feedbacks of increasing
atmospheric CO2, calcification, or a shift in the dominance
of coccolithophores, to better forecast the effects of global
change on our future oceans.
OA is one example stressor (or driver) but it is unlikely to

occur in isolation; climate change will result in multiple
stressors to organisms (Boyd et al., 2018). Indeed, OA also
highly impacts biogeochemical processes such as trace
metal availability to plankton communities (Hutchins
et al., 2009; Millero et al., 2009; Hoffmann et al., 2012). Iron
is an essential trace element for phytoplankton growth due
to its key role in metabolic processes, i.e. another driver
(Behrenfeld and Milligan, 2013). Its availability depends on
changes in pH, dissolvedFe concentration in the water, con-
centration and strength of iron-binding organic ligands
(OLs), and irradiance (Sunda and Huntsman, 1995;
Maldonado and Price, 2001; Barbeau et al., 2003; Millero
et al., 2009; Shi et al., 2010). Multiple stressors will affect
ecosystems directly but also interact with each other in
many ways. To date, most research has, however, consid-
ered a single stressor (Boyd et al., 2018).
In this context, we conducted a full factorial mesocosm

experiment with combined manipulation of both pCO2 and
dFe levels (Fig. S1) to assess the single or interactive
effects of pCO2 and dFe on the plankton community
(Segovia et al., 2017). The so altered community was inves-
tigated in the metabolomics-based study introduced here.
The metabolome is the complete inventory of intracellular
and extracellular small molecules (metabolites), synthetized
mostly, but not exclusively, by enzymatic reactions
(Goulitquer et al., 2012). In this experiment, the biomass of

the coccolithophore E. huxleyi strongly increased under ele-
vated dFe (induced by addition of desferrioxamine B, DFB)
and ambient pCO2 (LC) conditions, while increased pCO2

levels (HC) diminished E. huxleyi and Synechococcus
sp. biomass. However, increased dFe concentrations partly
mitigated the clear negative effects of elevated pCO2 on the
coccolithophore’s physiology (Segovia et al., 2017; Segovia
et al., 2018).

Considering the interactive effects of CO2 and iron, the
question arises, if such an observed altered species com-
position leads to changes of the community metabolome,
or if other players can take over the metabolic role of less
favoured species. Metabolites present in a sample at a
given time offer a valuable snapshot of what is happening
at this time in the community and/or ecosystem, as a
consequence of abiotic or biotic shifts. Thus, how the
environment affects phytoplankton metabolic processes
will structure their acclimation and adaptive success in a
changing climate. For instance, pH regulates metals’
chemistry in seawater (Millero et al., 2009; Hoffmann
et al., 2012) and in turn, phytoplankton control the cycling
of trace metals, their chemical speciation and distribution
in the sea. They release organic compounds (metabolites
that happen to be OLs such as mono- and polysaccha-
rides among others) which again regulate metals’ chem-
istry (Hassler and Schoemann, 2009; Hassler
et al., 2011; Sunda, 2012). Consequently, metabolomic
approaches allow the elucidation of the chemical com-
pounds that mediate responses to changing environmen-
tal/ecological factors or interactions in a complex
community (Kuhlisch and Pohnert, 2015). Such interac-
tions might be dependent on the metabolome of the com-
munity, revealing new mechanisms for processes such
as community functions, ultimately affecting the channel-
ling of matter and energy between trophic levels.

A number of culture-based studies have targeted the
intracellular or extracellular metabolome of E. huxleyi
(Obata et al., 2013; Rosenwasser et al., 2014; Mausz
and Pohnert, 2015; Wördenweber et al., 2018) observing
specific exometabolic responses triggered by grazing
(Poulson-Ellestad et al., 2016). (Info)chemicals produced
by diatom prey might influence selective feeding of cope-
pods with a preferential selection of cells in late stationary
phase (Barofsky et al., 2010), and the fatty acid composi-
tion encountered by grazers determines carbon transfer
between trophic levels (Müller-Navarra et al., 2000).
However, these studies focused on cultures thereby dis-
regarding more complex physiological responses in natu-
ral communities. Metabolomic approaches conducted
under close to natural conditions are scarce, but a recent
mesocosm study successfully combined metabarcoding
with metabolic analysis to demonstrate the importance of
phytoplankton-derived lipid and carbohydrate bioavailabil-
ity for copepod prey selection (Ray et al., 2016).
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The current work investigates global change multi-
stressor effects on the metabolome of a plankton commu-
nity in experimental mesocosms. The specific aim was to
study how increased pCO2 and changed Fe availability
affect the metabolic profile of a phytoplankton community
dominated by the coccolithophore E. huxleyi. We deter-
mined (i) the metabolome in relation to the community
structure patterns and (ii) possible metabolic changes
due to pCO2 or dFe treatments. We hypothesized that
the cell metabolism will respond to different individual or
interactive global change stressors. The intensity of the
resulting change will be related to the composition and
abundance of metabolic compounds in each cell/func-
tional group. Hence, individual metabolic changes will
affect how the marine plankton community responds to
climate-driven-stressors. This is of paramount relevance,
due to the imminent implications for the structuring and
functioning of plankton communities under high CO2

oceans prognosed for the future, and also in order to gain
deeper insights into the effects of climate change on
marine plankton communities over the coming decades
to centuries.

Results

Phytoplankton dynamics

Plankton community dynamics and their response to the
applied treatments in the mesocosms are described in
detail by Segovia et al. (2017). Here, we want to point
out a two-phasic pattern of phytoplankton community
succession (Fig. S2). Phase 1 (days 0–10) was charac-
terized by a rapid breakdown of an initial Skeletonema
sp.-dominated diatom bloom (Fig. S2g) accompanied by
a transient maximum of picoeukaryotes (Fig. S2d), small
and large nanoeukaryotes (Fig. S2e, f), and dinoflagel-
lates (Fig. S2h), and, slightly delayed, bacteria (Fig. S2i)
showed similar growth patterns and declined towards the
end of phase 1 (Fig. S2). In phase 2 (days 11–22),
Emiliania huxleyi (Fig. S2b) strongly increased in abun-
dance especially in the LC+DFB treatment reaching a
biomass of 1600 μg C L−1. Neither HC+DFB
(200 μg C L−1) nor HC-DFB (78 μg C L−1) exceeded the
carbon biomass of the control (LC-DFB, 400 μg C L−1)
(Fig. S2b). Note that carbon biomass or intracellular
metabolites refer to the particulate organic carbon (POC)
quotas. While HC inhibited E. huxleyi growth by approxi-
mately 50% compared with LC, DFB addition increased
dFe and favoured E. huxleyi growth (Segovia
et al., 2017). In parallel, Synechococcus sp. (Figure S2c)
responded similarly to both pCO2 and Fe treatments and
its abundance increased during the second phase. In
contrast, small and large nanoeukaryotes (including,
e.g. haptophytes except E. huxleyi) showed no

treatment-specific responses regardless of the increase
exhibited during phase 2 (Fig. S2e, f).

Metabolic analysis

Here we present the results of combining a metabolomic
study with a natural community succession experiment
driven by a multiple stressor scenario. To detect underly-
ing patterns despite the high complexity of the obtained
data, we applied a number of analysis strategies. We
started analysing whether the conducted pCO2 and Fe
treatments affected the community metabolome when
considering all acquired metabolome samples from the
22 days of the experiment. Due to the multivariate nature
of the metabolome dataset, we needed a powerful multi-
variate data analysis tool as provided by a constrained
ordination procedure. We decided to use a canonical
analysis of principal coordinates (CAP) and addressed
the a priori hypothesis whether different groups (treat-
ment or stage of community succession) affected the
community metabolome resulting in a discriminant analy-
sis (CAPdiscr). By interpreting variables (metabolites) as
data vectors (objects with a magnitude and direction
between a start and end point) in a multivariate space,
the discriminant analysis aims to define discriminant
functions that maximize the separation of objects deriving
from different groups. Besides generating trace statistics,
each variable gets assigned a correlation coefficient, a
statistical measure for the strength of the relationship.
These coefficients or ’loadings’ indicate the weight and
direction of each explanatory variable for the separation
of objects along with each discriminant function
(Anderson and Willis, 2003; Paliy and Shankar, 2016).
Thus, the higher the absolute value (load) of a metabo-
lite’s correlation coefficient is, the stronger is the relation-
ship. Furthermore, translating a metabolite’s correlation
coefficient into coordinates in a multivariate space pro-
vides the end point of a vector, whose direction repre-
sents its correlation to a group/treatment. Further details
on this type of statistical analysis can be found in the
experimental procedures.

Our analysis initially aimed to gain an overview of met-
abolic changes over the whole time-course including all
obtained samples from mesocosms and the fjord water.
After data processing and peak sum normalization, we
on average obtained 398 ± 73 specific compounds that
were consistently detected in all 269 analysed samples
deriving from 11 mesocosms and the fjord (compare
Table S1). Results from one of the mesocosms were
excluded from all analyses because a forming crust of
ferric material on the surface of a deployed measuring
instrument interfered with intended perturbations
(Segovia et al., 2017). In another 10 samples the number
of detected compounds was below the selection criterion
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(mean ± 2 × standard deviation) and therefore excluded
from further analysis. After processing, we were able to
analyse 333 compounds from 259 mesocosm and fjord
samples that remained in the constrained statistical
analysis.
Using this complete dataset of 259 samples, the statis-

tical approach of CAPdiscr separated fjord from meso-
cosm samples from day 4 onwards (first CAP axis:
eigenvalue 0.80, correlation Δ2 0.64) manifesting a signif-
icant shift in metabolites released by the mesocosm
plankton community compared with their fjord origin.
However, due to the high complexity of the complete
dataset, we could not find any specific patterns related to
pCO2 or Fe treatments. Accordingly, treatments could
not be separated (Fig. 1) by multivariate statistics as indi-
cated by high misclassification (44.79%) of samples in
the ‘leave-one-out’ test (Table 1).
Since with the first analytical approach we could not

determine treatment effects or other patterns when con-
sidering all obtained data, we focused on the control
treatment (LC-DFB) only and analysed whether
metabolomic changes correlated with different phases
along the plankton community development. Therefore,
we split our data into subsets based on metabolic stages
related to phytoplankton dynamics defined above (stage
1: days 4–10, stage 2: days 11–22), but included a stage
0 (days 0–3) during which no metabolic separation
between mesocosms and the fjord water was observed.
We initially tested this approach on the control as it best
reflected a community not subjected to stressors.

Further on, to better distinguish between phytoplankton
dynamics and metabolic changes, we will use the term
‘phase’ for phytoplankton community succession steps
(phase 1: days 0–10, phase 2: days 11–22), while meta-
bolic responses shall be referred to as ‘stages’ (stage 0:
days 0–3, stage 1: days 4–10, stage 2: days 11–22).

Metabolomic profiling of the control indicated metabolic
shifts in accordance with community succession

We hypothesized that metabolic profiles followed a pat-
tern related to community succession. To test this
hypothesis, we applied the discriminant analysis-based
CAPdiscr to the control treatment (LC-DFB) using the
three metabolic stages defined above as groups. We
found that in control samples the three stages were well
separated based on their metabolic profiles (eigenvalues
0.91, and 0.80, correlation Δ2 0.83, and 0.64) (Table 1;
Fig. 2). These results supported our hypothesis, thus we
next determined which metabolites were responsible for
the separation. A total of 152 out of 333 consistently
detected compounds significantly correlated with either of
the three stages. One hundred and five compounds
(69.1%) could be identified or tentatively assigned to a
biochemical class, the rest remained unknown (Figs 3
and 4).

Amines were among the metabolites (met.) that
increased most pronouncedly in concentrations during
stage 1: Ethanolamine, cadaverine and putrescine
strongly correlated with stage 1 as did all detected amino
acids (Figs 3 and 4, Fig. S3). Carboxylic acids either cor-
related with stage 0 or 1. For example, fumaric acid, and
pyrrole-2-carboxylic acid (in two silylated forms) had vec-
tors pointing towards stage 0 (Fig. 4a), whereas a
benzoic acid derivative (met. 166), and malic acid
strongly increased during stage 1 (up to 196-fold, and
27-fold more metabolite respectively) (Tables S2 and
S3). The alcohol hexadecan-1-ol was associated with
stage 1 as were most metabolites not assigned into a
major metabolic class such as diethylenglycol or putative
uridine (Figs 3 and 4A).

Saccharides and their derivatives exhibited a complex
pattern with many monosaccharides significantly correlat-
ing with stage 0 or 1 while still showing low concentra-
tions throughout the study (Figs 3 and 4B). Among them
were, e.g. xylose, 2-O-glycerol-α-d-galactopyranoside
and three pentafuranoses (met. 135, 136 and 143). Malt-
ose, an unidentified disaccharide (met. 297), threonic
acid and a hexonic acid (a hexose-derived sugar acid,
met. 208) showed correlation to stage 0 and decreased
in concentration toward stage 1 and 2. In contrast,
pentonic acids (pentose-derived sugar acids, met.
169, and 173) exhibited the highest concentrations in
stage 1 (Fig. 3). The galactoside digalactosylglycerol was

Fig 1. Multivariate separation of metabolic profiles deriving from
mesocosms under different CO2 and iron treatments from fjord water
(FW) by canonical discriminant analysis of principal coordinates
(CAPdiscr) using a Bray–Curtis distance matrix. See Table 1 for sta-
tistical diagnostic values. Symbols represent 259 samples taken
from mesocosms and fjord water (the latter: days 0–16 and 19–22)
over a duration of 22 days. Phytoplankton communities within meso-
cosms were exposed to pCO2 or iron treatments in triplicate (n = 3)
except for LC-DFB where n = 2. Abbreviations: DFB, des-
ferrioxamine B; HC, high pCO2 (900 μatm); LC, ambient pCO2

(390 μatm); pCO2, partial pressure of gaseous carbon dioxide.
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slightly elevated during stage 0 and the early days of
stage 1 (Fig. 3). While an inositol isomer was higher
abundant during stage 0, many sugar alcohols
(e.g. mannitol, sorbitol, galactitol and viburnitol) increased
during stage 2 (Fig. 3).

We could not see consistent correlation patterns in lipid
classes. Many free fatty acids like myristic acid,
9-hexadecenoic acid and arachidonic acid showed higher
concentrations during stage 0 and the early days of stage
1 but decreased in concentration over time toward stage
2, a pattern shared with the detected glyceride species
1-monohexadecanoylglycerol, and a C16:0-glycerol (met.
287). In contrast, other fatty acids correlated with stage
1 (Figs 3 and 4C). Most sterols increased in concentration
over timeand significantly correlatedwith stage 1 or 2 (Figs 3
and 4C). So, (22E)-26,27-dinoergosta-5,22-dien-3β-ol,
(3β,5α)-cholestan-3-ol, fucosterol, beta-sitosterol, C29H52O
and C29H54O correlated with stage 1, while e.g. epibras-
sicasterol, and stigmasterol separated stage 2. The oxo-
terpene E-phytol declined by 57%–86% during stage 2 in
comparison to initial conditions (day 0) (Table S2). Addition-
ally, unidentified metabolites were frequent during stage
0, but mostly correlatedwith stage 1 (Fig. 4D).

In summary, analysis of the control supported a three-
stage metabolic pattern following phytoplankton commu-
nity succession. We further successfully identified a num-
ber of metabolites that correlated with one of the three
stages.

Single and interactive effects of pCO2 and dFe

Although our analytical approach did not reveal a separa-
tion of treatments when the complete dataset including the
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Fig 2. Multivariate separation of metabolic profiles in stage 0 (days
0–3), stage 1 (days 4–10) and stage 2 (days 11–22) in the control
(LC-DFB) by CAPdiscr using Bray–Curtis dissimilarities. Symbols rep-
resent 45 samples taken from duplicate mesocosms (one mesocosm
on day 0) over a duration of 22 days. See Table 1 for statistical diag-
nostic values.
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fjord water was analysed, we assumed that treatment-
related effects should become apparent over the course of
the experiment. Hence, we next used CAPdiscr to test
whether we could find patterns related to pCO2 and dFe

treatments in the metabolic profiles during any of the three
stages detected in the control.

The metabolic profiles of samples did not differ during
stage 0 (p = 0.3833, permutation test) and half of them

Fig 3. Heat map of log2 converted fold-changes in relation to initial conditions (day 0) for increased (black, print—red, online) or decreased (white,
print—blue, online) metabolites significantly correlated with the control (LC-DFB) during stages 0, 1 and 2. Numbers represent metabolite identi-
fiers (Tables S2 and S3). A caret indicates structure confirmation by standard or natural sample. Metabolites tagged with ‘?’ possessed a reverse
match of 700–800 and those with ‘??’ one of 600–700. Data represent log2 converted fold-change of duplicate mesocosms (n = 2). Metabolomic
data were normalized by peak sum. [Color figure can be viewed at wileyonlinelibrary.com]
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were misclassified by cross-validation in stage 1 (Fig. 5A
and B, Table 1) contradicting an early structuring effect of
pCO2 or dFe. However, during stage 2 the first CAP axis
accounted for differences between LC and HC treat-
ments, while the second axis separated between dFe
treatments under LC (eigenvalue 0.93, and 0.85, correla-
tion Δ2 0.87, and 0.72), but failed to separate between
HC+DFB and HC–DFB (Fig. 5C). Since the algorithm of
CAPdiscr produces (number of groups −1) axes, our
dataset with four groups was reproduced in a three-
dimensional space. But even the third axis failed to sepa-
rate between dFe treatments under HC (eigenvalue 0.47,
correlation Δ2 0.22), and with 23.2% the misclassification
error remained high during stage 2 (Table 1). Cross-
validation performed by a ‘leave-one-out’ test could only
correctly assign 69.7% of the samples to HC+DFB and
correct placement decreased to 56.3% in HC-DFB, fur-
ther confirming that there was no separation between HC
treatments. To better understand how the treatments

affected metabolic profiles, we analysed the main single
effects of pCO2 or dFe during stage 2. Metabolic profiles
were significantly separated by pCO2 as main effect dur-
ing stage 2 (misclassification error 2.4%) (Table 1;
Fig. 5D). In contrast, dFe alone did not significantly differ-
entiate metabolic profiles (Fig. 5E), as the CAP axis
failed to separate between +DFB and −DFB (eigenvalue
0.64, correlation Δ2 0.41) resulting in 28.8% of samples
being misclassified (Table 1). The inability to distinguish
between metabolic profiles of HC+DFB and HC–DFB
together with the findings that pCO2 well separated meta-
bolic profiles in accordance to treatments while dFe alone
did not, lead us to the assumption that the four treat-
ments did not evenly affect metabolic profiles. So as to
best represent our metabolomic data and get the most
information from data analysis, we decided to pool HC
+DFB and HC–DFB samples resulting in three groups
best demonstrating effects on metabolic profiles: LC-
DFB, LC+DFB and HC (including both +DFB and -DFB).

A B

C D

Fig 4. Vector plots of metabolites significantly correlated with the LC-DFB treatment (control) during stage 0 (days 0–3), stage 1 (days 4–10) or
stage 2 (days 11–22) and belonging to (A) small compound classes or unassigned metabolites, (B) saccharides and other carbohydrates,
(C) lipids, or (D) unknown metabolites. Numbers refer to metabolite identifiers (Tables S2 and S3). The inset positions metabolites in relation to
metabolic stages. [Color figure can be viewed at wileyonlinelibrary.com]
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When these newly defined groups were tested by
CAPdiscr, the three groups formed well-separated clusters
(Fig. 5F) with only 4.0% of the samples being mis-
classified by cross-validation (Table 1). This result con-
firmed that from a metabolomics perspective it was valid
to combine HC+DFB and HC–DFB into a HC treatment,
because metabolic profiles were nearly identical.
Overall, treatment effects just became apparent dur-

ing metabolic stage 2 and we found that the four treat-
ments only partially accounted for patterns of metabolic
profiles during this stage. While pCO2 affected the
metabolism independent of the iron treatment, DFB
addition influenced the community metabolome only
under LC.

Metabolic profiling showed correlation of most
metabolites with LC+DFB

After identifying that three treatments better represented
our metabolic profiles during stage 2, we then examined
which metabolites responded to which of the treatments.
When treatments were grouped into LC-DFB, LC+DFB

and HC in stage 2, 175 out of the 333 analysed detected
compounds significantly correlated with the treatments.
113 (64.6%) could be identified or assigned to a meta-
bolic class and 62 remained unknown (Figs 6 and 7).
Below, we report metabolic responses based on path-
ways rather than treatments, because this best reflects
the biochemistry of cells.

As noticed for the control, small metabolites such as
amines or amino acids strongly increased in concentra-
tions over time and most of them correlated with LC
+DFB (Figs 6 and 7A, Fig. S4a). For example, an amine
of the sum formula C10H17NO (met. 33), and two putative
amines (met. 40, and 141) correlated with LC+DFB, while
hydroxylamine and ethanolamine showed highest con-
centrations under HC (Figs 6 and 7A). Amino acids
(except glycine) and all detected TCA cycle substrates
(succinic, fumaric, malic, and citric acid) increased more
strongly under LC+DFB as did most of the remaining car-
boxylic acids (Fig. 6). The alcohols propane-1,3-diol, a
long-chained alcohol (met. 271) and several metabolites
not assigned into major classes (e.g. glycerol,
lumichrome, trishydroxybenzene and putative adenosine)
also significantly correlated with LC+DFB. In contrast,

A B C

D E F

Fig 5. Multivariate separation of all treatments based on community metabolic profiles (A) in stage 0 (days 0–3), (B) stage 1 (days 4–10) and
(C) stage 2 (days 11–22) of the mesocosm experiment by CAPdiscr using Bray–Curtis dissimilarities. Effect of (D) pCO2, and (E) dFe manipulation
during stage 2, and (F) of a treatment combination (LC-DFB, LC+DFB, HC), which best represented metabolic profiles. See Table 1 for statistical
diagnostic values. For better visualization, fjord samples were included in the analyses of pCO2 and dFe (D, E) without plotting, as a CAPdiscr on
two groups results in a one-dimensional output. Abbreviations as in Fig. 1.
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diethylenglycol showed comparable abundance under LC
+DFB and HC and a malonic acid amide correlated with
both HC and LC-DFB (Figs 6 and 7A).

Among saccharides and their derivatives many were
highly correlated with LC+DFB or were observed in compa-
rable abundance in LC-DFB and HC as indicated by vectors

Fig 6. Heat map of log2 converted fold-changes in relation to initial conditions (day 0) for increased (black, print—red, online) or decreased (white,
print—blue, online) metabolites significantly correlated with the treatments during stage 2. Numbers represent metabolite identifiers (Tables S2
and S3). A caret indicates structure confirmation by standard or a natural sample. Metabolites tagged with ‘?’ possessed a reverse match of
700–800 and those with ‘??’ one of 600–700. Data represent log2 converted fold-change of mean of triplicate mesocosms (n = 3) except for LC-
DFB and a few data points with a replicate excluded from the analysis where n = 2 (see text). Metabolomic data were normalized by peak sum.
Abbreviations as in Fig. 1. [Color figure can be viewed at wileyonlinelibrary.com]
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pointing between these treatments (Fig. 7B). Thus, xylose,
ribose, fructose, galactose, glucose, 1-methyl-alpha-D-
glucopyranoside and three out of five complex saccharides
(lactose and two unidentified disaccharides, met. 298 and
302) were related to LC+DFB. In contrast, the galactoside
galactosylglycerol increased strongest in the LC-DFB treat-
ment (Fig. 6). Sugar acids either exhibited highest concen-
trations under LC+DFB (e.g. glyceric and threonic acid) or
correlated with HC (Figs 5 and 7b). In contrast, all except
two sugar alcohols (galactinol and another complex one,
met. 309) significantly increased under HC or had vectors
pointing between HC and LC-DFB (e.g. sorbitol, galactitol
and viburnitol), thus, accounting for both treatments (Figs 6
and 7B).
Among lipids, correlations with LC+DFB dominated as

observed for most free fatty acids. An exception provided an
unidentified fatty acid (met. 87) and an octadecanoic acid
derivative, which decreased in LC+DFB (Fig. 6). Methyl-
tetradecanoic acid showed comparable abundances in HC
and LC-DFB treatments (Fig. 6). Sterols mostly exhibited

concentration increases during stage 2. (22E)-26,-
27-dinorergosta-5,22-dien-3β-ol, epibrassicasterol and stig-
masterol correlated with LC+DFB. However, cholesterol,
(3β,5α)-cholestan-3-ol and a putative sterol (met. 318) simi-
larly increased under HC and LC-DFB (Figs 6 and 7C). Fur-
thermore, the terpenes E-phytol, which generally declined
during stage 2, and alpha-tocopherol, aswell as three unsat-
urated hydrocarbons (met. 118, 154 and 229) were affiliated
to LC+DFB (Fig. 7C). Unidentified metabolites dominantly
correlated with LC+DFB, but some also separated HC
(Fig. 7D).

Discussion

Phytoplankton community responses to pCO2 and iron
treatments

In this mesocosm experiment we demonstrate that the
phytoplankton community responded to changes in Fe
availability and pCO2 increase at the metabolic and at

A B

C D

Fig 7. Vector plots of metabolites significantly correlated with all four treatments during stage 2 (days 11–22) and belonging to (A) small com-
pound classes or unassigned metabolites, (B) saccharides and other carbohydrates, (C) lipids, or (D) unknown metabolites. Numbers refer to
metabolite identifiers (Tables S2 and S3). The inset positions metabolites in relation to treatments. Abbreviations as in Fig. 1. [Color figure can be
viewed at wileyonlinelibrary.com]
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the physiological level. This has major consequences for
organisms belonging to the microbial loop and reaches
out to higher trophic levels since they will be exposed to
different interactions, communities, resources and regula-
tors. Indeed, climate change can potentially weaken
marine food webs through reduced energy flow to higher
trophic levels, leading to food web simplification and
altered producer–consumer dynamics (Ullah et al., 2018).
For a better understanding of the processes relating to
the treatments, we briefly summarize the mesocosm
experiment results originating from Segovia et al. (2017)
(Figs S1, S2, S5). High CO2 levels significantly affected
the chemical environment, due to the very dynamic spe-
ciation of particulate and dissolved trace metals occurring
in Norwegian fjords (e.g. Fe; Öztürk et al., 2002). High
CO2, as well as the DFB addition elevated dFe concen-
tration, and consequently increased Fe availability (see
Segovia et al., 2017; Lorenzo et al., 2020 for further infor-
mation). In the DFB treatments higher dFe concentrations
were sustained, showing that DFB significantly increased
the solubility of Fe, as previously reported (Chen
et al., 2004) and demonstrated in this experiment by the
calculation of Fe partitioning coefficients of the molar ratio
between particulate and dissolved concentrations (see
Fig. 4 in Lorenzo et al., 2020). A bloom of the
coccolithophore Emiliania huxleyi was observed in the
ambient CO2 treatments, and was especially massive in
the presence of DFB (LC+DFB). This result suggests that
E. huxleyi is able to utilize DFB-bound Fe (Fe-DFB)
(Segovia et al., 2017). Emiliania huxleyi produces a wide
range of metabolites with a high affinity for Fe (Boye and
van den Berg, 2000), and thus is able to acquire Fe from
organic Fe complexes (Hartnett et al., 2012), including
Fe-DFB (Shaked and Lis, 2012; Lis et al., 2015). While
the biomass of E. huxleyi was negatively affected by
increased CO2 (Fig. S2b), increased dFe partially miti-
gated the negative effect of elevated CO2, indicating that
the coccolithophore was able to acclimate better to OA
when Fe availability was high (Fig. S2b). High dFe also
had a positive effect on the cyanobacterium Syn-
echococcus sp. (Figure S2c) while the rest of the plank-
ton food web did not respond to the treatments
(Fig. S2d–i) (Segovia et al., 2017).

Phytoplankton showed a two-phasic succession pat-
tern in response to increased pCO2 and Fe availability as
discussed by Segovia et al. (2017) with the most pro-
nounced effect on the phytoplankton community
observed in the LC treatment with elevated dFe (LC
+DFB). A low Fe demand of the majority of phytoplankton
groups except for E. huxleyi during phase 2 (Segovia
et al., 2017) indicated that the dFe levels in the meso-
cosms were high enough to fulfil their Fe demands. In
contrast, an array of symptoms indicative for Fe deficient
algae (Behrenfeld and Milligan, 2013), including high Fe

demand by the coccolithophore, reduced growth rates,
lower Chl a and pigmentary content, low Fv/Fm and dimin-
ished photosynthesis, less DNA repair and poor ROS
detoxification, were typical in the controls (LC-DFB) and
strongly hinted Fe limitation for E. huxleyi in phase
2 (Segovia et al., 2017, 2018; Lorenzo et al., 2020).

Community metabolome reflects phytoplankton
community changes within the control treatment

We assume that the control (LC-DFB) metabolic profiles
reflected metabolic characteristics of a natural plankton
community that switched from a diatom-dominated to a
partly E. huxleyi-dominated bloom due to nutrient exhaus-
tion after day 7. During stage 0 diatoms showed high abun-
dances (Segovia et al., 2017), and also metabolic profiles
denoted indication for a diatom-dominated community
implied by the detection of 1-monohexadecanoylglycerol, a
glyceride previously reported from a benthic diatom (Nappo
et al., 2009). Additionally, indicators for S. costatum bloom
decline occurred in the community meta-metabolomeduring
stage 0. This persisted early in stage 1 while metabolome
data also indicated a shift toward a mixed phytoplankton
community, where E. huxleyi was already developing
(Segovia et al., 2017). The contribution of bacterial groups
to stage 1 of the community metabolome was neglectable
irrespective of their abundances during plankton develop-
ment (phase 1) due to low biomass of Synechococcus
sp. in comparison to other phytoplankton groups, and the
limitation of our filtration method in retaining heterotrophic
bacteria (Lee et al., 1995; Mausz and Pohnert, 2015). The
massive E. huxleyi biomass was themain contributor tomet-
abolic profiles during stage 2 in the control.

Interpreting our findings constituted a challenge as the
application of metabolomics is rarely used in analysing
such complex communities as found in mesocosm exper-
iments. With the exception of a recent study connecting
copepod-prey selection to metabolic traits of the phyto-
plankton prey species (Ray et al., 2016), most mesocosm
studies tend to limit complexity of investigated metabolic
processes by targeted analyses, if these processes were
at all considered. Commonly, effects of a specific com-
pound class from a known producer, or targeted effects
of toxicant or inhibitor addition at the community level,
are quantified (Knauert et al., 2008; Liess and
Beketov, 2011; Vidoudez et al., 2011; Paul et al., 2012).
Hence, the lack of reference mesocosm-related meta-
bolic profiles hitherto has necessitated a more indirect
discussion with references to metabolomes of single spe-
cies cultures.

Metabolic profiles of stage 0 were complex and subject
to various patterns that partly transitioned into stage
1. Although several monosaccharides significantly corre-
lated with stages 0 and 1, our data are in accordance
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with decreasing overall carbon fixation rates during stage
0 due to the decline in diatoms (Lorenzo et al., 2018).
Phosphorus starvation reportedly increased the sugar
content in diploid E. huxleyi cultures (Wördenweber
et al., 2018), and many saccharides exhibited slightly
higher concentrations early in our experiment. This could
be explained by photosynthesis still fuelling part of the
energy needs of the cell, while downstream metabolism
was increasingly halted due to nutrient conditions already
limiting to a S. costatum-dominated diatom bloom during
days 0–7. Our results are in agreement with higher glu-
cose and polysaccharide levels reported in stationary S.
costatum cells in culture (Vidoudez and Pohnert, 2012).
Nutrient limitation downregulates the TCA cycle activity,
leading to insufficient production of NADPH/ATP to main-
tain cell functioning and accumulation of TCA cycle
metabolites (Wördenweber et al., 2018). This is consis-
tent with highest concentrations of fumaric and malic acid
in our metabolomic data during stages 0 and 1. Further-
more, pyrrole-2-carboxylic acid (correlated with stage 0)
can derive from hydroxy-proline via an enzymatic or non-
enzymatic reaction (Radhakrishnan and Meister, 1957)
and its production is TCA cycle activity-dependent. The
hypothetic scenario of a gradual metabolic shutdown
described here, both conforms to metabolic data and the
phytoplankton biomass development indicating the
breakdown of an early diatom bloom.
Further support for a rapid decline in at least part of the

phytoplankton community during the early days of the experi-
ment can be found in lipid-associated metabolites detected
during metabolic stages 0 or 1. Concentrations of an inositol
isomer, glycerol and the glycoside digalactosylglycerol asso-
ciated with stage 0 potentially derive from lipid breakdown.
Linked to two fatty acids via glycerol, inositol forms the
headgroup of the phospholipid phosphatidylinositol from
which it can be enzymatically released (as phosphoinositol)
by lipid degradation, e.g. during phosphorus starvation in
plants (Nakamura, 2013) or in diatoms as observed in
Phaeodactylum tricornutum (Brembu et al., 2017). In agree-
ment to patterns observed in our experiment,
digalactosylglycerol, the de-acylated form of galactolipids
which occur in photosynthetic tissue of algae (van
Hummel, 1975), accumulated during the stationary phase in
E. huxleyi cell cultures (Mausz andPohnert, 2015). Concom-
itantly, ethanolamine strongly increased during stage
1, hence, it might be similarly released from the lipid phos-
phatidylethanolamine indicating a progressing decay of cell
membranes. The decaying diatom bloom is also reflected by
high polyamine concentrations of putrescine and cadaverine
during stage 1. Putrescine accumulated in declining diatom
batch cultures (Vidoudez and Pohnert, 2012). Additionally, a
study in the East China Sea documented increased poly-
amine concentrations after the dispersal of a S. costatum
bloom when diatoms decomposed (Liu et al., 2016). These

metabolic marker corroborate the breakdown of a diatom
bloom accompanied by a community shift to pico- and nano-
eukaryotes, dinoflagellates, and later to a high abundance of
E. huxleyi in the control (Fig. S2) (Segovia et al., 2017).

We did not observe any sign of nitrogen limitation of
phytoplankton growth during the experiment (Fig. S5).
Limiting NO3 concentration during phase 2 was compen-
sated for by NH+

4 via remineralization and nutrient
release from the decaying diatom bloom in phase 1. Mea-
sured NH+

4 levels of around 1.4 μM were well above the
N demand of 0.78 μM N for individual phytoplankton
groups (Segovia et al., 2017). Furthermore, we did not
observe increases in C:Chl a ratios, which can be a proxy
for N limitation (Jakobsen et al., 2015).

All detected amino acids correlated with metabolic
stage 1 potentially provide a cellular pool of free amino
acids that can serve as significant nitrogen buffer
(Admiraal et al., 1986). Single species cultures confirm
that amino acid production is high as long as nitrogen is
not limited (Admiraal et al., 1986; Haberstroh and
Ahmed, 1986). In iron-limited P. tricornutum cultures,
increased glycolysis provided pyruvate-derived amino
acids (of which isoleucine, valine and alanine were
detected in our study) required for cellular proteome syn-
thesis (Allen et al., 2008). As the community composition
was diverse during phytoplankton phase 1 (Segovia
et al., 2017), various species might have contributed to
the amino acid pool in the metabolic stage 1 including E.
huxleyi from which all detected amino acids except for N-
acetylglutamic acid, have previously been reported
(Obata et al., 2013; Mausz and Pohnert, 2015). Addition-
ally, the complexity of sterols observed during stage
1 supports the assumption of a mixed community,
reflecting the high variability of sterols in marine micro-
algae (Volkman, 2003). Fucosterol for instance domi-
nates in brown algae (Patterson, 1971) and contributes
up to 14% of total sterols in diatoms (Gladu et al., 1991).
Sitosterol was found in high concentrations in the
haptophyte Diacronema (Monochrysis) lutheri (Lin
et al., 1982). Stigmasterol together with brassicasterol
accounted for >75% of total sterols in haptophytes
(Véron et al., 1996), although stigmasterol is not reported
from the most abundant haptophyte, E. huxleyi (Maxwell
et al., 1980; Mausz and Pohnert, 2015). Thus, we argue
that the producers of the latter belonged to the small
nanoeukaryote group that includes haptophytes and was
present during stages 1 and 2.

Metabolic stage 2 manifested the high E. huxleyi abun-
dance accompanied by first indications of bloom decline
in the control. Mannitol, the main storage compound in E.
huxleyi (Obata et al., 2013), accumulated during this
period, as did epibrassicasterol, the dominant sterol in
diploid E. huxleyi cells (Maxwell et al., 1980; Mausz and
Pohnert, 2015). Induction of many sugar alcohols during
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stage 2 indicated increasing stress as they can function
as free radical scavengers (Raven and Beardall, 2003)
and in culture accompanied algal decline (Mausz and
Pohnert, 2015). Glucose slightly increased again with
proceeding time after nutritional resources had been
used up and it was no longer consumed in downstream
glycolysis and energy production.

Treatments affect the community metabolome

Effects of treatments became apparent during metabolic
stage 2. The metabolic community profiles diverged in
response to pCO2. In contrast, dFe only affected meta-
bolic profiles in dependence of pCO2, indicating an inter-
acting effect on metabolism. Most metabolites correlated
with LC+DFB, the treatment in which E. huxleyi massively
bloomed due to increased dFe (Segovia et al., 2017). HC
treatments did not result in E. huxleyi bloom develop-
ment, and HC+DFB was not resolvable from HC-DFB by
metabolic profiles. Nevertheless, increased dFe concen-
trations relieved cellular stress and enhanced photosyn-
thetic activity in HC+DFB compared with HC-DFB
(Lorenzo et al., 2018; Segovia et al., 2018). At the meta-
bolic level, several metabolites (e.g. some of the sugar
alcohols) positioned between LC-DFB (control) and HC
(combining +DFB and -DFB treatments) in the CAPdiscr

analyses. This partial metabolic similarity of LC–DFB and
HC could be linked to iron deficiency imposing a general
stress, although most stress indicators correlated with
HC treatments.

Correlation of the majority of amino acids (except gly-
cine and its derivative, met. 90) to LC+DFB suggests
high productivity situations. Valine directly derives from
the glycolysis end product pyruvate, N-acetylglutamic
acid is formed from glutamic acid and acetyl-CoA (Maas
et al., 1953), and threonine, and hydroxy-proline descend
from the TCA cycle receiving pyruvate via glycolysis. This
demonstrates that high carbon fixation rates and glyco-
lytic activity are necessary to sustain exponential growth.
Indeed, increased Fe availability promoted the highest
values of carbon fixation and particulate organic carbon
accumulation at ambient pCO2 during the bloom condi-
tions (LC+DFB), as well as highest growth (Segovia
et al., 2017; Lorenzo et al., 2018). Interestingly, all four
detected TCA cycle intermediates correlated with LC
+DFB as well. This is probably due to the requirement of
iron as cofactor for aconitase, a key enzyme in the TCA
cycle (Gray et al., 1993), and might indicate that high dFe
concentrations in this treatment foster energy production
via the TCA cycle (Segovia et al., 2017). In parallel,
metabolites such as adenosine, and the pyridine deriva-
tives nicotinic or picolinic acid increased, pointing to
induced pyridine and purine biosynthesis for nucleotide
production. Thus, we can legitimately suppose that

nucleic acid and nucleotide biosynthesis are high in a fer-
tile, growing population, since assessment of nucleic acid
concentrations is used to quantify growth (e.g. Karl
et al., 1981; Moriarty and Pollard, 1981). Supporting this,
Segovia et al. (2018) found that DNA repair increased
under LC+DFB as compared with the rest of the
treatments.

Metabolome as well as physiological data revealed
high photosynthetic activity and production of building
blocks for cell growth and division. The photosynthetic
electron transporter chain is highly iron-demanding mak-
ing it vulnerable to iron stress (Raven et al., 1999), but
under LC+DFB iron was plentiful favouring photosynthe-
sis (Lorenzo et al., 2018; Segovia et al., 2018). This
should result in the production of ATP, providing an addi-
tional explanation for the accumulation of adenosine, the
head-group of ATP, visible in metabolic profiles. Photo-
synthetic energy generation could then fuel carbon fixa-
tion and subsequent creation of C3 sugars that could be
converted into glucose. The latter then can be conveyed
into glycolysis facilitating downstream metabolic reactions
and promoting cell growth. Accordingly, we observed a
slight increase in fructose, an early downstream product
in glycolysis, as well as accumulation of sugar acids, par-
ticularly glyceric acid. If the enzymatic reducing capacity
from photosynthesis in the presence of light is high,
glycerate formation from CO2 and accumulation is high
(Tolbert, 1979) and this metabolite’s relative intensity
increases over further downstream products such as
glycerol. This compound also accumulated in LC-treat-
ments, while the effect gets reversed under iron limitation
(Allen et al., 2008).

We confirmed a high complexity of sterols replicating the
diversity of this compound class in phytoplankton
(Volkman, 2003). Epibrassicasterol, the main sterol occur-
ring in E. huxleyi (Maxwell et al., 1980), was highly abundant
under LC+DFB probably due to the better performance of
the coccolithophore. Effects of pCO2 are unlikely as a previ-
ous laboratory-based study did not see huge changes in
epibrassicasterol concentrations in E. huxleyi cultures under
varying pCO2 (Riebesell et al., 2000). Moreover, a consis-
tent phytol content under changing pCO2 (Riebesell
et al., 2000) contrasts its correlation with LC+DFB reported
here. Phytol constitutes the side-chain of chlorophyll
a connected to its porphyrin backbone via an ester bond,
but might also derive from chlorophyll b, d, or bacteriochlo-
rophyll a. While chlorophyll c generally does not contain
phytol, some haptophytes including E. huxleyi possess
formsofunusualphytol-substitutedchlorophyllc (e.g.Nelson
and Wakeham, 1989; Zapata and Garrido, 1997). Thus, the
correlation could also either reflect the general pattern of
high photosynthetic activity or the high abundance of
E. huxleyi. It might also relate to the correlation of the power-
ful radical-trapping antioxidant alpha-tocopherol (Palozza

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 22, 3863–3882

CO2 & dFe determine plankton community metabolome 3875



and Krinsky, 1992) to LC+DFB. Its induction presumably
lowered the stress experienced by algae as reported for
plants (Munné-Bosch, 2005). Our metabolic data are also
supported by the low oxidative stress detected in the LC
+DFB treatment in this very experiment suggesting efficient
free-radical scavengingmechanisms. Additionally, LC+DFB
fostered the accumulation of key pigments such as fucoxan-
thins, chlorophyll a and c, promoting photosynthesis
(Segovia et al., 2018).

HC treatments featured metabolites associated to stress

While LC+DFB generally induced favourable metabolic
reactions, HC might have led to higher stress levels. Sugar
alcohols, which mostly correlated with this treatment, can
function as free radical scavengers (Raven and
Beardall, 2003). The glycolytic derivative myo-inositol and
its isomer were especially prominent, as an inositol dehydro-
genase putatively allows haptophytes to use an inositol/
inosase shuttle system for reducing equivalents between
mitochondrion and cytosol (Gross and Meyer, 2003). As we
see induced concentrations of glycine and its derivative, this
reducing power exchange mechanism might have especial
importance under the light of an intensified glycine and ser-
ine metabolism as it can mitigate the production of reactive
oxygen species (Allen et al., 2008).
Ethanolamine, head-group of phosphatidylethanol-

amines, correlated with HC. Gordillo et al. (1998)
reported that in nitrogen-limited Dunaliella viridis cultures,
phosphatidylethanolamine concentrations were only
affected by high pCO2 (1%) but not ambient pCO2. Their
explanation of a relation to carbon availability does not fit
the correlation patterns observed here. Almost all free
fatty acids, the potential reaction partners to form phos-
phatidylethanolamine, were highest concentrated under
LC. This contradicts a previous study reporting an
increase in fatty acid cell content for all but highly unsatu-
rated ones (C18:5 and C22:6) under increased pCO2

conditions in E. huxleyi batch cultures (Riebesell
et al., 2000). In our experiment, dFe might have overruled
the potential pCO2 effect as suggested in the physiology
of E. huxleyi (Segovia et al., 2017, 2018). Thus, we spec-
ulate that the high abundance of fatty acids found in the
blooming LC+DFB treatment could possibly mirror the
generally high content of such storage lipids in algae
(Griffiths and Harrison, 2009).

Concluding remarks

The present study supports the initial hypothesis that the
individual or interactive stressors pCO2 and dFe besides
affecting species composition also impact the metabolic
inventory of phytoplankton communities. Several meta-
bolic changes could be explained by altered productivity

of the system, and also by distinct changes that consti-
tute stress markers and potential signalling molecules
that are specifically induced during stress. We success-
fully traced certain metabolites to their putative producers
within the phytoplankton community, but more impor-
tantly, we documented a bloom decline in the community
metabolome.

Bioavailability is defined as the degree to which a cer-
tain compound can be accessed and utilized by an
organism (reviewed in Shaked and Lis, 2012); on our
case, Fe available for uptake, thus for growth. Sufficient
bioavailable iron induced increased metabolic activity,
and high amino and fatty acid biosynthesis under LC
+DFB where E. huxleyi bloomed, as compared with LC-
DFB. In contrast, HC lead to cellular stress responses.
One could argue that the coccolithophore not only did
benefit from more Fe, coping better with the stress driven
by increased CO2, but also it probably benefitted from
reduced competition as other phytoplankton species
were disadvantaged. Indeed, E. huxleyi gained a compet-
itive advantage, but not because other phytoplankton
species were disadvantaged due to decreased Fe avail-
ability, but because E. huxleyi presumably better met the
metabolic requirements imposed by the encountered
changed conditions as discussed by Segovia et al. (2017).
The authors demonstrated that increased dFe during our
experiment may have helped E. huxleyi cells to meet the
extra metabolic demands imposed by the decrease in
pH, allowing them to sustain growth due to the high Fe
demand of this species vs. lower Fe demands of the
other functional groups analysed. Within this scenario,
some strains that are held back by iron limitation might
become more abundant, gaining a competitive advantage
through their low stringent requirements for nutrients and
high growth under photoinhibitory conditions (traits not
found in other functional groups) at increased Fe avail-
ability. The negative effects of OA on the development of
ecologically and globally important species sensitive to
increased CO2 such as E. huxleyi, will be more relevant
in high-Fe environments than in Fe-limited ones by possi-
bly allowing a better stress management.

Thus, how the metabolic repertoire is affected, is key
to unravel and predict changes to global change-driven-
shifts at the community level. In a changing ocean, con-
sumers in the plankton food web may encounter a modu-
lated availability of resources, not only displayed by
species but also by physiological changes. Hence, the
altered phytoplankton meta-metabolome might affect the
coupling between phytoplankton as primary and herbi-
vores as secondary producers. Global change could then
drive a marine food web collapse through altered trophic
flows, a consequence of the global change scenario.
Supposedly, what matters might not be the ‘presence’ of
specific species, but rather, the metabolic composition
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encountered by herbivores, phytoplankton, and heterotro-
phic bacterioplankton. Our study provides a predictive
tool on specific resource availability in a rapidly changing
marine plankton food web, which is of paramount rele-
vance to understand what the future ocean may look like,
attending to multiple stressors synergies and antagonistic
effects.

Experimental procedures

Experimental design

The experimental work was carried out from 5 to 27 June
2012 in the Raunefjord (60.27�N, 5.22�E), off Bergen, Nor-
way as described in detail by Segovia et al. (2017).We used
a full factorial design with all combinations of ambient and
elevated pCO2 and dFe in three independent replicate
mesocosms as detailed in the Supporting information.While
two levels of CO2 (LC, ambient pCO2 at 390 μatm, and HC,
high pCO2 at 900 μatm) were achieved by addition of pure
CO2 gas, following recommendations by Marchetti and
Maldonado (2016), changes in Fe availability were induced
by amending half of the mesocosms with 70 nM (final con-
centration) of the siderophore desferrioxamine B (DFB) on
day 7, when the community was already acclimated to high
CO2. Even thoughDFB is a strongFe-bindingOL often used
to induce Fe limitation in phytoplankton (Wells, 1999), DFB
additions may also increase the dissolved Fe pool in envi-
ronments with high concentrations of colloidal and/or partic-
ulate Fe, such as fjords (Kuma and Matsunaga, 1995;
Öztürk et al., 2002). In our experiment, the solubility of Fe in
seawater was affected by either lowering the pH
(Millero, 1998; Millero et al., 2009) and/or by the addition of
DFB (Chen et al., 2004). The resulting multifactorial treat-
ments were accordingly called LC-DFB (control), LC+DFB,
HC+DFB and HC-DFB. Information on daily sampling of the
mesocosms can be found in the Supporting information.

Plankton counts

Plankton analysis is described in detail by Segovia
et al. (2017). Bacterioplankton and phytoplankton smaller
than 20 μm were analysed by flow cytometry (Cytomics
FC 500, Beckman Coulter, and FACSCalibur, Becton
Dickinson respectively). Phytoplankton larger than 20 μm
and microzooplankton were determined by using a Flow-
CAM (Fluid Imaging Technologies, USA).

Sampling of intracellular metabolites

Subsamples for monitoring intracellular metabolites were
collected during daytime into 1 L plastic bottles (polypropyl-
ene, Nalgene®,VWR), since previous work in our group
indicated an influence for sampling time mostly for

differences in daytime vs. nighttime sampling (Vidoudez
and Pohnert, 2012). Depending on E. huxleyi abundance,
3–6 L seawater were concentrated on GF/F glass fibre fil-
ters (mesh size �0.7 μm, Whatman) under medium vac-
uum (�600 mbar), primarily retaining eukaryotic
phytoplankton and larger bacteria such as cyanobacteria,
since up to 87% of bacterioplankton cells can pass through
GF/F filters (Lee et al., 1995). The performed 200 μmmesh
pre-filtration in combination with the choice of GF/F glass
fibre filters should have mostly prevented retaining non-
target organisms. Filtrations were carried out under artifi-
cial light (PAR 150–200 μmol photons m−2 s−1) and in situ
temperature (�10�C) to prevent temperature stress. Fjord
water was sampled as a reference for metabolic changes.
Cell filtration took 2–4 h per treatment. Wet filters were
transferred into high-purity solvents (Chromasolv®,
Chromasolv® Plus, Sigma-Aldrich; HiPerSolv, VWR) for
metabolite extraction and stored at −80�C. Samples were
processed within 1 month as described previously
(Vidoudez and Pohnert, 2012; Mausz and Pohnert, 2015)
with the following modifications: after extraction and drying
for�5 h under reduced pressure (<30 mbar) samples were
dried for another 1–2 h under further reduced pressure
(<1 mbar) to ensure absolute dryness. For N-methyl-N-
trifluoroacetamide (MSTFA)-derivatization the incubation
temperature was increased from 40�C to 60�C.

GC–MS analysis and intracellular metabolite data
processing

Gas chromatography mass spectrometry analysis condi-
tions and conducted quality control measures are
detailed in the Supporting information. Data processing
was based on a published protocol (Vidoudez and
Pohnert, 2012) and is further explained in the Supporting
information. Data were normalized dividing each peak
area by the sum of all peak areas within a biological repli-
cate. This peak sum normalization delivers changes in
the relative composition of the metabolome and avoids
effects of different signal intensities caused by a variation
of the overall metabolite content in the extracted cells as
it could result from normalizing to, e.g. chlorophyll a. Due
to the high complexity of the community, normalization by
volume (litre) or biomass was not suitable for the
obtained metabolomics data. For data presentation, log2
converted fold-change in relation to initial conditions (day
0) was calculated to distribute data around zero for better
visualization.

Statistical analysis

Significant differences between pCO2 and dFe treat-
ments were evaluated by canonical analysis of principal
coordinates (CAP). This multivariate approach performs
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an initial principal coordinate analysis using any chosen
distance or dissimilarity matrix followed by a discriminant
analysis resulting in a canonical discriminant analysis of
principal coordinates (CAPdiscr). The multivariate data get
reproduced onto a g-1 dimensional multivariate space
with g equalling the number of groups (treatments) and
orthogonal canonical axes that maximize differences
among group locations (Anderson and Robinson, 2003;
Anderson and Willis, 2003). We used CAP12 software
(Anderson, 2004) with Bray–Curtis dissimilarity for the
distance matrix and parameters according to Vidoudez
and Pohnert (2012). CAPdiscr is advantageous due to a
very low sensitivity to hidden correlations, as needed for
the application to metabolic samples containing amine
derivatives. Moreover, it has the ability to analyse large
multivariate datasets, and was previously successfully
applied to microalgae metabolomes (Vidoudez and
Pohnert, 2012; Paul et al., 2013; Rosenwasser
et al., 2014; Mausz and Pohnert, 2015). We report statis-
tical diagnostic values in the forms of eigenvalue (λ) and
squared correlation (Δ2). The eigenvalue indicates the
efficiency of the axes in separating groups (the discrimi-
nating power), while Δ2 specifies in how far axes are
related to differences between groups. In addition, we
obtained a p-value by permutation and performed cross-
validation using the ‘leave-one-out’ approach, which
obtains a misclassification error as estimate for the dis-
tinctness of groups in the multivariate space
(Lachenbruch and Mickey, 1968). For CAPdiscr all these
parameters need to be considered when deciding about
the statistical power of a test. In CAPdiscr the explanatory
variable (X) is composed of pairs of retention time and
mass to charge ratio (m/z) with a responsive variable
(Y) equalling the normalized peak area of each metabo-
lite. Choosing a discriminant analysis approach addition-
ally allowed us to determine the contribution of each
metabolite (the explanatory variables) to the separation
of groups based on their assigned weighted correlation
coefficients (Paliy and Shankar, 2016). Correlations of
metabolites with the CAP axes were considered signifi-
cant, if they fall above a threshold correlation coefficient
determined by a t-distribution with the corresponding
degrees of freedom and a significance of p = 0.01. Visu-
alization of correlation coefficients as vectors allowed
their assignment to a specific treatment. The longer a
vector is, the higher its correlation to a treatment distrib-
uted in the same direction with reference to the first two
CAP axes.

Metabolite identification

Analysis of mass spectra to identify metabolites is
described in detail in the Supporting information. Detailed
information on measurement and peak annotation is

provided in Table S4 based on recommendations by Fer-
nie et al. (2011).

Acknowledgements

This work was supported by CTM/MAR 2010-17216 research
grant (PHYTOSTRESS) from the Spanish Ministry for Science
and Innovation (Spain) to M.S. G.P. acknowledges financial
support by the CRC1127 ChemBioSys by the German
Research Foundation. M.A.M. was supported by the EU
FP7-INFRASTRUCTURE-2008-1 Project MESOAQUA
(Network of leading MESOcosm facilities to advance the stud-
ies of future AQUAtic ecosystems from the Arctic to the Medi-
terranean) Grant No. 228224 (through the Transnational
Access Program) and by a PhD studentship of the Interna-
tional Leibniz Research School for Microbial and Biomolecular
Interactions (ILRS). S.A.B. was supported by the EU
FP7-INFRASTRUCTURE-2008-1 Project MESOAQUA Grant
No. 228224. A.L. was supported by the EU-ERC grant 250254
(MINOS) and the RCN project no. 225956/E10 (MicroPolar:
Processes and Players in Arctic Marine Pelagic Food Webs –

Biogeochemistry, Environment and Climate Change). We
thank all participants of the PHYTOSTRESS project that hel-
ped setting up and sampling the mesocosms. We thank the
staff at the Marine Biological Station (MBS) Espegrend, Nor-
way, for logistic support. We also thank Prof. Ulrich
S. Schubert for providing access to the flow cytometer to per-
form bacterial cell counts. We thank the two anonymous
reviewers for very insightful comments and constructive
criticisms.

References

Admiraal, W., Peletier, H., and Laane, R.W.P.M. (1986)
Nitrogen metabolism of marine planktonic diatoms; extrac-
tion, assimilation and cellular pools of free amino acids in
seven species with different cell size. J Exp Mar Biol Ecol
98: 241–263.

Allen, A.E., LaRoche, J., Maheswari, U., Lommer, M.,
Schauer, N., Lopez, P.J., et al. (2008) Whole-cell
response of the pennate diatom Phaeodactylum
tricornutum to iron starvation. Proc Natl Acad Sci U S A
105: 10438–10443.

Anderson, M.J. (2004) CAP: A FORTRAN Computer Pro-
gram for Canonical Analysis of Principal Coordinates.
New Zealand: Department of Statistics, University of
Auckland.

Anderson, M.J., and Robinson, J. (2003) Generalized dis-
criminant analysis based on distances. Aust N Z J Stat
45: 301–318.

Anderson, M.J., and Willis, T.J. (2003) Canonical analysis of
principal coordinates: a useful method of constrained ordi-
nation for ecology. Ecology 84: 511–525.

Barbeau, K., Rue, E.L., Trick, C.G., Bruland, K.W., and
Butler, A. (2003) Photochemical reactivity of siderophores
produced by marine heterotrophic bacteria and cyano-
bacteria based on characteristic Fe(III) binding groups.
Limnol Oceanogr 48: 1069–1078.

Barofsky, A., Simonelli, P., Vidoudez, C., Troedsson, C.,
Nejstgaard, J.C., Jakobsen, H.H., and Pohnert, G. (2010)

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 22, 3863–3882

3878 M. A. Mausz et al.



Growth phase of the diatom Skeletonema marinoi influ-
ences the metabolic profile of the cells and the selective
feeding of the copepod Calanus spp. J Plankton Res 32:
263–272.

Behrenfeld, M.J., and Milligan, A.J. (2013) Photo-
physiological expressions of iron stress in phytoplankton.
Annu Rev Mar Sci 5: 217–246.

Boyd, P.W., Collins, S., Dupont, S., Fabricius, K.,
Gattuso, J.-P., Havenhand, J., et al. (2018) Experimental
strategies to assess the biological ramifications of multiple
drivers of global ocean change-a review. Glob Chang Biol
24: 2239–2261.

Boye, M., and van den Berg, C.M.G. (2000) Iron availability
and the release of iron-complexing ligands by Emiliania
huxleyi. Mar Chem 70: 277–287.

Brembu, T., Mühlroth, A., Alipanah, L., and Bones, A.M.
(2017) The effects of phosphorus limitation on carbon
metabolism in diatoms. Philos Trans R Soc Lond B Biol
Sci 372: 20160406.

Caldeira, K., and Wicket, M.E. (2003) Anthropogenic carbon
and ocean pH. Nature 425: 365.

Chen, M., Wang, W.-X., and Guo, L. (2004) Phase partitioning
and solubility of iron in natural seawater controlled by dis-
solved organic matter.Global BiogeochemCy 18: GB4013.

Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A.,
Chou, L., et al. (2005) Testing the direct effect of CO2 con-
centration on a bloom of the coccolithophore Emiliania
huxleyi in mesocosm experiments. Limnol Oceanogr 50:
493–507.

Fernie, A.R., Aharoni, A., Willmitzer, L., Stitt, M., Tohge, T.,
Kopka, J., et al. (2011) Recommendations for reporting
metabolite data. Plant Cell 23: 2477–2482.

Gladu, P.K., Patterson, G.W., Wikfors, G.H., Chitwood, D.J.,
and Lusby, W.R. (1991) Sterols of some diatoms. Phyto-
chemistry 30: 2301–2303.

Gordillo, F.J.L., Goutx, M., Figueroa, F.L., and Niell, F.X.
(1998) Effects of light intensity, CO2 and nitrogen supply
on lipid class composition of Dunaliella viridis. J Appl
Phycol 10: 135–144.

Goulitquer, S., Potin, P., and Tonon, T. (2012) Mass
spectrometry-based metabolomics to elucidate functions in
marine organisms and ecosystems.Mar Drugs 10: 849–880.

Gray, N.K., Quick, S., Goossen, B., Constable, A.,
Hirling, H., Kühn, L.C., and Hentze, M.W. (1993) Recombi-
nant iron-regulatory factor functions as an iron-responsive-
element-binding protein, a translational repressor and an
aconitase. Eur J Biochem 218: 657–667.

Griffiths, M.J., and Harrison, S.T.L. (2009) Lipid productivity
as a key characteristic for choosing algal species for bio-
diesel production. J Appl Phycol 21: 493–507.

Gross, W., and Meyer, A. (2003) Distribution of myo-inositol
dehydrogenase in algae. Eur J Phycol 38: 191–194.

Haberstroh, P.R., and Ahmed, S.I. (1986) Resolution by high
pressure liquid chromatography of intracellular and extra-
cellular free amino acids of a nitrogen deficient marine dia-
tom, Skeletonema costatum (Grev.) Cleve, pulsed with
nitrate or ammonium. J Exp Mar Biol Ecol 101: 101–117.

Hartnett, A., Böttger, L.H., Matzanke, B.F., and Carrano, C.J.
(2012) Iron transport and storage in the coccolithophore:
Emiliania huxleyi. Metallomics 4: 1160–1166.

Hassler, C.S., and Schoemann, V. (2009) Bioavailability of
organically bound Fe to model phytoplankton of the South-
ern Ocean. Biogeosciences 6: 2281–2296.

Hassler, C.S., Schoemann, V., Nichols, C.M., Butler, E.C.,
and Boyd, P.W. (2011) Saccharides enhance iron bio-
availability to Southern Ocean phytoplankton. Proc Natl
Acad Sci U S A 108: 1076–1081.

Hoffmann, L.J., Breitbarth, E., Boyd, P.W., and Hunter, K.A.
(2012) Influence of ocean warming and acidification on
trace metal biogeochemistry. Mar Ecol Prog Ser 470:
191–205.

Hutchins, D.A., Mulholland, M.R., and Fu, F. (2009) Nutrient
cycles and marine microbes in a CO2-enriched ocean.
Oceanography 22: 128–145.

IPCC. (2014) Climate change 2014: synthesis report. Contri-
bution of working groups I, II and III to the fifth assessment
report of the intergovernmental panel on climate change.
In Core Writing Team, Pachauri, R.K., and Meyer, L.A.
(eds). Geneva, Switherland: IPCC, p. 151.

IPCC. (2019) Summary for policymakers. In IPCC Special
Report on the Ocean and Cryosphere in a Changing Cli-
mate, Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V.,
Zhai, P., Tignor, M., Poloczanska, E., et al. (eds).

Jakobsen, H.H., Blanda, E., Staehr, P.A., Højgård, J.K.,
Rayner, T.A., Pedersen, M.F., et al. (2015) Development
of phytoplankton communities: implications of nutrient
injections on phytoplankton composition, pH and ecosys-
tem production. J Exp Mar Bio Ecol 473: 81–89.

Joos, F., and Spahni, R. (2008) Rates of change in natural
and anthropogenic radiative forcing over the past
20,000 years. Proc Natl Acad Sci U S A 105: 1425–1430.

Karl, D.M., Winn, C.D., and Wong, D.C.L. (1981) RNA syn-
thesis as a measure of microbial growth in aquatic envi-
ronments. I. Evaluation, verification and optimization of
methods. Mar Biol 64: 1–12.

Knauert, S., Escher, B., Singer, H., Hollender, J., and
Knauer, K. (2008) Mixture toxicity of three photosystem II
inhibitors (antrazine, isoproturon, and diuron) toward pho-
tosynthesis of freshwater phytoplankton studied in outdoor
mesocosms. Environ Sci Technol 42: 6424–6430.

Kuhlisch, C., and Pohnert, G. (2015) Metabolomics in chemi-
cal ecology. Nat Prod Rep 32: 937–955.

Kuma, K., and Matsunaga, K. (1995) Availability of colloidal
ferric oxides to coastal marine phytoplankton. Mar Biol
122: 1–11.

Lachenbruch, P.A., and Mickey, M.R. (1968) Estimation of
error rates in discriminant analysis. Dent Tech 10: 1–11.

Lee, S., Kang, Y.-C., and Fuhrman, J.A. (1995) Imperfect
retention of natural bacterioplankton cells by glass fiber fil-
ters. Mar Ecol Prog Ser 119: 285–290.

Liess, M., and Beketov, M. (2011) Traits and stress: keys to
identify community effects of low levels of toxicants in test
systems. Ecotoxicology 20: 1328–1340.

Lin, D.S., Ilias, A.l.M., Connor, W.E., Caldwell, R.S., Cory, H.
T., and Daves, G.D.J. (1982) Composition and biosynthe-
sis of sterols in selected marine phytoplankton. Lipids 17:
818–824.

Lis, H., Shaked, Y., Kranzler, C., Keren, N., and Morel, F.M.
M. (2015) Iron bioavailability to phytoplankton: an empiri-
cal approach. ISME J 9: 1003–1013.

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 22, 3863–3882

CO2 & dFe determine plankton community metabolome 3879



Liu, Y., Zhao, W., Li, C., and Miao, H. (2016) Free polyamine
content during algal bloom succession in the East China
Sea in spring 2010. Chin J Oceanol Limnol 35: 215–223.

Lorenzo, M.R., Iñiguez, C., Egge, J.K., Larsen, A.,
Berger, S.A., García-Gómez, C., and Segovia, M. (2018)
Increased CO2 and iron availability effects on carbon
assimilation and calcification on the formation of Emiliania
huxleyi blooms in a coastal phytoplankton community.
Environ Exp Bot 148: 47–58.

Lorenzo, M.R., Segovia, M., Cullen, J.T., and Maldonado, M.
T. (2020) Particulate trace metal dynamics in response to
increased CO2 and iron availability in a coastal mesocosm
experiment. Biogeosciences 17: 1–14.

Maas, W.K., Novelli, G.D., and Lipmann, F. (1953) Acetyla-
tion of glutamic acid by extracts of Escherichia coli. Proc
Natl Acad Sci U S A 39: 1004–1008.

Maldonado, M.T., and Price, N.M. (2001) Reduction and
transport of organically bound iron by Thalassiosira
oceanica (Bacillariophyceae). J Phycol 37: 298–310.

Marchetti, A., andMaldonado,M.T. (2016) Iron. In ThePhysiology
of Microalgae, Borowitzka, M.A., Beardall, J., and Raven, J.A.
(eds). Cham:Springer International Publishing, pp. 233–279.

Mausz, M.A., and Pohnert, G. (2015) Phenotypic diversity of
diploid and haploid Emiliania huxleyi cells and of cells in
different growth phases revealed by comparative met-
abolomics. J Plant Physiol 172: 137–148.

Maxwell, J.R.,Mackenzie, A.S., andVolkman, J.K. (1980)Config-
uration at C-24 in steranes and sterols.Nature 286: 694–697.

Millero, F.J. (1998) Solubility of Fe(III) in seawater. Earth
Planet Sci Lett 154: 323–329.

Millero, F.J., Woosley, R., DiTrolio, B., and Waters, J. (2009)
Effect of ocean acidification on the speciation of metals in
seawater. Oceanography 22: 72–85.

Moriarty, D.J.W., and Pollard, P.C. (1981) DNA synthesis as
a measure of bacterial productivity in seagrass sediments.
Mar Ecol Prog Ser 5: 151–156.

Müller-Navarra, D.C., Brett, M.T., Liston, A.M., and
Goldman, C.R. (2000) A highly unsaturated fatty acid pre-
dicts carbon transfer between primary producers and con-
sumers. Nature 403: 74–77.

Munné-Bosch, S. (2005) The role of α-tocopherol in plant
stress tolerance. J Plant Physiol 162: 743–748.

Nakamura, Y. (2013) Phosphate starvation and membrane
lipid remodeling in seed plants. Prog Lipid Res 52: 43–50.

Nappo, M., Berkov, S., Codina, C., Avila, C., Messina, P.,
Zupo, V., and Bastida, J. (2009) Metabolite profiling of the
benthic diatom Cocconeis scutellum by GC-MS. J Appl
Phycol 21: 295–306.

Nelson, J.R., Wakeham S.G. (1989). A phytol-substituted
chlorophyll c from Emiliania huxleyi (Prymnesiophyceae).
Journal of Phycology, 25: 761–766. http://dx.doi.org/10.
1111/j.0022-3646.1989.00761.x.

Obata, T., Schoenefeld, S., Krahnert, I., Bergmann, S.,
Scheffel, A., and Fernie, A.R. (2013) Gas-chromatography
mass-spectrometry (GC-MS) based metabolite profiling
reveals mannitol as a major storage carbohydrate in the
coccolithophorid alga Emiliania huxleyi. Metabolites 3:
168–184.

Öztürk, M., Steinnes, E., and Sakshaug, E. (2002) Iron specia-
tion in the Trondheim Fjord from the perspective of iron limita-
tion for phytoplankton.Estuar CoastMar Sci 55: 197–212.

Paasche, E. (2002) A review of the coccolithophorid
Emiliania huxleyi (Prymnesiophyceae) with particular refer-
ence to growth, coccolith formation, and calcification-
photosynthesis interactions. Phycologia 40: 503–529.

Paliy, O., and Shankar, V. (2016) Application of multivariate
statistical techniques in microbial ecology. Mol Ecol 25:
1032–1057.

Palozza, P., and Krinsky, N.I. (1992) β-Carotene and
α-tocopherol are synergistic antioxidants. Arch Biochem
Biophys 297: 184–187.

Patterson, G.W. (1971) The distribution of sterols in algae.
Lipids 6: 120–127.

Paul, C., Mausz, M.A., and Pohnert, G. (2013) A co-
culturing/metabolomics approach to investigate chemically
mediated interactions of planktonic organisms reveals
influence of bacteria on diatom metabolism. Metabolomics
9: 349–359.

Paul, C., Reunamo, A., Lindehoff, E., Bergkvist, J.,
Mausz, M.A., Larsson, H., et al. (2012) Diatom derived
polyunsaturated aldehydes do not structure the planktonic
microbial community in a mesocosm study. Mar Drugs 10:
775–792.

Poulson-Ellestad, K.L., Harvey, E.L., Johnson, M.D., and
Mincer, T.J. (2016) Evidence for strain-specific
exometabolomic responses of the coccolithophore
Emiliania huxleyi to grazing by the dinoflagellate Oxyrrhis
marina. Front Mar Sci 3: 1.

Radhakrishnan, A.N., and Meister, A. (1957) Conversion of
hydroxyproline to pyrrole-2-carboxylic acid. J Biol Chem
226: 559–571.

Raven, J.A., and Beardall, J. (2003) Carbohydrate metabo-
lism and respiration in algae. In Photosynthesis in Algae,
Larkum, A.W.D., Douglas, S.E., and Raven, J.A. (eds).
Dordrecht: Springer Netherlands, pp. 205–224.

Raven, J.A., Evans, M.C.W., and Korb, R.E. (1999) The role
of trace metals in photosynthetic electron transport in
O2-evolving organisms. Photosynth Res 60: 111–150.

Ray, J.L., Althammer, J., Skaar, K.S., Simonelli, P.,
Larsen, A., Stoecker, D., et al. (2016) Metabarcoding and
metabolome analyses of copepod grazing reveal feeding
preference and linkage to metabolite classes in dynamic
microbial plankton communities. Mol Ecol 25: 5585–5602.

Riebesell, U., Bach, L.T., Bellerby, R.G.J., Monsalve, J.R.B.,
Boxhammer, T., Czerny, J., et al. (2017) Competitive fit-
ness of a predominant pelagic calcifier impaired by ocean
acidification. Nat Geosci 10: 19–23.

Riebesell, U., and Gattuso, J.-P. (2015) Lessons learned from
ocean acidification research.Nat Clim Change 5: 12–14.

Riebesell, U., Revill, A.T., Holdsworth, D.G., and
Volkman, J.K. (2000) The effects of varying CO2 concen-
tration on lipid composition and carbon isotope fraction-
ation in Emiliania huxleyi. Geochim Cosmochim Acta 64:
4179–4192.

Rosenwasser, S., Mausz, M.A., Schatz, D., Sheyn, U.,
Malitsky, S., Aharoni, A., et al. (2014) Rewiring host lipid
metabolism by large viruses determines the fate of
Emiliania huxleyi, a bloom-forming alga in the ocean. Plant
Cell 26: 2689–2707.

Rost, B., and Riebesell, U. (2004) Coccolithophores and the
biological pump: responses to environmental changes. In
Coccolithophores: From Molecular Processes to Global

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 22, 3863–3882

3880 M. A. Mausz et al.

http://dx.doi.org/10.1111/j.0022-3646.1989.00761.x
http://dx.doi.org/10.1111/j.0022-3646.1989.00761.x


Impact, Thierstein, H.R., and Young, J.R. (eds). Berlin,
Heidelberg: Springer-Verlag, pp. 99–126.

Schulz, K.G., Bach, L.T., Bellerby, R.G.J., Bermúdez, R.,
Büdenbender, J., Boxhammer, T., et al. (2017) Phytoplankton
blooms at increasing levels of atmospheric carbon dioxide:
experimental evidence for negative effects on prymne-
siophytes and positive on small picoeukaryotes. Front Mar
Sci 4: 64. https://doi.org/10.3389/fmars.2017.00064.

Segovia, M., Lorenzo, M.R., Iñiguez, C., and García-
Gómez, C. (2018) Physiological stress response associ-
ated with elevated CO2 and dissolved iron in a phyto-
plankton community dominated by the coccolithophore
Emiliania huxleyi. Mar Ecol Prog Ser 586: 73–89.

Segovia, M., Lorenzo, M.R., Maldonado, M.T., Larsen, A.,
Berger, S.A., Tsagaraki, T.M., et al. (2017) Iron availability
modulates the effects of future CO2 levels within the
marine planktonic food web. Mar Ecol Prog Ser 565:
17–33.

Shaked, Y., and Lis, H. (2012) Disassembling iron availabil-
ity to phytoplankton. Front Microbiol 3: 123.

Shi, D., Xu, Y., Hopkinson, B.M., and Morel, F.M.M. (2010)
Effect of ocean acidification on iron availability to marine
phytoplankton. Science 327: 676–679.

Stewart, R.I.A., Dossena, M., Bohan, D.A., Jeppesen, E.,
Kordas, R.L., Ledger, M.E., et al. (2013) Chapter two -
mesocosm experiments as a tool for ecological climate-
change research. Adv Ecol Res 48: 71–181.

Sunda, W. (2012) Feedback interactions between trace
metal nutrients and phytoplankton in the ocean. Front
Microbiol 3: 204.

Sunda, W.G., and Huntsman, S.A. (1995) Iron uptake and
growth limitation in oceanic and coastal phytoplankton.
Mar Chem 50: 189–206.

Tans, P., and Keeling, R.F. (2020). Trends in atmospheric
carbon dioxide [WWW document]. URL https://www.esrl.
noaa.gov/gmd/ccgg/trends/.

Tolbert, N.E. (1979) Glycolate metabolism by higher plants
and algae. In Photosynthesis II, Gibbs, M., and Latzko, E.
(eds). Berlin Heidelberg: Springer Verlag, pp. 338–352.

Ullah, H., Nagelkerken, I., Goldenberg, S.U., and
Fordham, D.A. (2018) Climate change could drive marine
food web collapse through altered trophic flows and
cyanobacterial proliferation. PLoS Biol 16: e2003446.

van Hummel, H.C. (1975) Chemistry and biosynthesis of plant
galactolipids. In Fortschritte der Chemie Organischer
Naturstoffe/Progress in the Chemistry of Organic Natural
Products, Zechmeister, L., Herz, W., Grisebach, H., and
Kirby, G.W. (eds). Wien: Springer Verlag, pp. 267–295.

Véron, B., Dauguet, J.-C., and Billard, C. (1996) Sterolic bio-
markers in marine phytoplankton. I. Free and conjugated
sterols of Pavlova lutheri (Haptophyta). Eur J Phycol 31:
211–215.

Vidoudez, C., Nejstgaard, J.C., Jakobsen, H.H., and
Pohnert, G. (2011) Dynamics of dissolved and particulate
polyunsaturated aldehydes in mesocosms inoculated with
different densities of the diatom Skeletonema marinoi.
Mar Drugs 9: 345–358.

Vidoudez, C., and Pohnert, G. (2012) Comparative met-
abolomics of the diatom Skeletonema marinoi in different
growth phases. Metabolomics 8: 654–669.

Volkman, J.K. (2003) Sterols in microorganisms. Appl
Microbiol Biotechnol 60: 495–506.

Wells, M.L. (1999) Manipulating iron availability in nearshore
waters. Linmol Oceanogr 44: 1002–1008.

Westbroek, P., Young, J.R., and Linschooten, K. (1989)
Coccolith production (biomineralization) in the marine alga
Emiliania huxleyi. J Protozool 36: 368–373.

Wördenweber, R., Rokitta, S.D., Heidenreich, E., Corona, K.,
Kirschhöfer, F., Fahl, K., et al. (2018) Phosphorus and
nitrogen starvation reveal life-cycle specific responses in
the metabolome of Emiliania huxleyi (Haptophyta). Limnol
Oceanogr 63: 203–226.

Zapata, M., Garrido J.L. (1997). Occurrence of phytylated
chlorophyll c in Isochrysis galbana and Isochrysis
sp. (clone T-ISO) (Prymnesiophyceae). Journal of Phycol-
ogy, 33: 209–214. http://dx.doi.org/10.1111/j.0022-3646.
1997.00209.x.

Supporting Information

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Table S1 Average number of detected metabolites.
Table S4. Summary of parameters used for peak annotation
based on recommendations by Fernie et al. (20112011).
Fig. S1. Temporal development of (a) partial pressure of
gaseous carbon dioxide (pCO2), and (b) dissolved iron (dFe)
due to desferrioxamine B (DFB) addition and pCO2.
Figure reproducedwith permission fromSegovia et al. (2017).
Fig. S2. Temporal development of chlorophyll a (μg L−1),
phytoplankton, and heterotrophic bacterioplankton biomass
(μg C L−1) in the mesocosms exposed to different CO2 and
dissolved iron (dFe) treatments. (a) Chlorophyll a,
(b) Emiliania huxleyi (5–10 μm), (c) Synechococcus
sp. (0.6–2 μm), (d) picoeukaryotes (0.1–2 μm), (e) small
nanoeukaryotes (prasinophytes, small haptophytes,
2–7 μm), (f) large nanoeukaryotes (small single-celled dia-
toms and flagellated forms, 6–20 μm), (g) diatoms (chain-
forming Skeletonema sp. 20- > 500 μm), (h) dinoflagellates
(20–200 μm), (i) heterotrophic bacterioplankton (0.2–0.7 μm).
Symbols indicate mean measurement of three independent
mesocosms (n = 3) except for LC-DFB where n = 2. Error
bars denote standard deviations. Abbreviations: DFB, des-
ferrioxamine B; HC, high pCO2 (900 μatm); LC, ambient
pCO2 (390 μatm); pCO2, partial pressure of gaseous carbon
dioxide. Figure reproduced with permission from Segovia
et al. (2017).
Fig. S3. Vector plots (one vector exemplified, symbols show-
ing vector heads) of metabolites significantly correlated with
the LC-DFB treatment (control) during stage 0 (days 0–3),
stage 1 (days 4–10), or stage 2 (days 11–22) and belonging
to (a) small compound classes or unassigned metabolites,
(b) saccharides and other carbohydrates, (c) lipids, or
(d) unknown metabolites. Numbers refer to metabolite identi-
fiers (Supporting information Table S2, S3). The insert posi-
tions metabolites in relation to metabolic stages. This figure
corresponds to Fig. 4 except that only vector heads are pres-
ented for increased readability of metabolite identifiers.
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Fig. S4. Vector plots (one vector exemplified, symbols
showing vector heads) of metabolites significantly corre-
lated with all four treatments during stage 2 (days 11–22)
and belonging to (a) small compound classes or
unassigned metabolites, (b) saccharides and other carbo-
hydrates, (c) lipids, or (d) unknown metabolites. Numbers
refer to metabolite identifiers (Supporting information
Table S2, S3). The insert positions metabolites in relation
to treatments. This figure corresponds to Fig. 7 except that
only vector heads are presented for increased readability
of metabolite identifiers.
Fig. S5. Temporal development of major nutrient concentra-
tions within the mesocosms in the different treatments (LC:
ambient CO2 (390 μatm); HC: increased CO2 (900 μatm);
-DFB: no DFB addition; +DFB: with a 70 nM DFB addition):
(a) nitrate, (b) ammonium, (c) silicic acid, (d) soluble reactive
phosphate (SRP). Figure reproduced with permission from
Segovia et al. (2017).
Table S2 Fold-changes in relation to pre-experimental condi-
tions (day 0) of increased (red) and decreased (blue)
detected metabolites for pCO2 and dFe treatments in the
mesocosms. A caret indicates a structure confirmed by stan-
dard or a natural sample. Metabolites tagged with ‘?’ pos-
sessed a reverse match of 700–800 and those with ‘??’ one
of 600–700. Data represent fold-change of mean of triplicate
mesocosms (n = 3) except for LC-DFB (n = 2) and a few

data points, where we had to exclude a replicate as outlier,
where n = 2 (see text). Metabolomic data have been normal-
ized by peak sum. The column ‘Treatment’ refers to the
treatment(s) a metabolite significantly correlated with.
Abbreviations: A, amine; AA, amino acid; Alc, alcohol; CA,
carboxylic acid; CS, complex saccharide; D, day; DFB, des-
ferrioxamine B; dFe, dissolved iron; FA, fatty acid; G, glycer-
ide; Ga, galactoside; HC, high pCO2 (900 μatm); HY,
hydrocarbon; LC, ambient pCO2 (390 μatm); O, other; pCO2,
partial pressure of gaseous carbon dioxide; RT, retention
time; S, saccharide; SA, sugar acid; SAlc, sugar alcohol; ST,
sterol; TP, terpene; U, unknown.
Table S3. Log2 converted fold-changes in relation to pre-
experimental conditions (day 0) of increased (red) and
decreased (blue) detected metabolites for pCO2 and dFe
treatments in the mesocosms. A caret indicates a structure
confirmed by standard or a natural sample. Metabolites
tagged with ‘?’ possessed a reverse match of 700–800 and
those with ‘??’ one of 600–700. Data represent log2
converted fold-change of mean of triplicate mesocosms
(n = 3) except for LC-DFB (n = 2) and a few data points,
where we had to exclude a replicate as outlier, where n = 2
(see text). Metabolomic data have been normalized by peak
sum. The column treatment refers to the treatment(s) a
metabolite significantly correlated with. Abbreviations as in
Table S2.
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