223 research outputs found
The High Frequency Instrument of Planck: Requirements and Design
The Planck satellite is a project of the European Space Agency based on a wide international collaboration, including United States and Canadian laboratories. It is dedicated to the measurement of the anisotropy of the Cosmic Microwave Background (CMB) with unprecedented sensitivity and angular resolution. The detectors of its High frequency Instrument (HFI) are bolometers cooled down to 100 mK. Their sensitivity will be limited by the photon noise of the CMB itself at low frequencies, and of the instrument background at high frequencies. The requirements on the measurement chain are directly related to the strategy of observation used for the satellite. Due to the scanning on the sky, time features of the measurement chain are directly transformed into angular features in the sky maps. This impacts the bolometer design as well as other elements: For example, the cooling system must present outstanding temperature stability, and the amplification chain must show, down to very low frequencies, a flat noise spectrum
Use of High Sensitivity Bolometers for Astronomy: Planck High Frequency Instrument
The Planck satellite is dedicated to the measurement of the anisotropy of the Cosmic Microwave Background (CMB) with unprecedented sensitivity and angular resolution. It is a
project of the European Space Agency based on a wide international collaboration, including United States and Canadian laboratories. The detectors of its High Frequency Instrument (HFI) are bolometers cooled down to 100 mK. Their sensitivity will be limited by the photon noise of
the CMB itself at low frequencies, and of the instrument background at high frequencies. The requirements on the measurement chain are directly related to the strategy of observation used for the satellite. This impacts the bolometer design as well as other elements: The cooling system must present outstanding temperature stability, and the amplification chain must show a flat noise spectrum down to very low frequencies
Infection‐driven activation of transglutaminase 2 boosts glucose uptake and hexosamine biosynthesis in epithelial cells
DATA AVAILABILITYThe mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD017117.International audienceTransglutaminase 2 (TG2) is a ubiquitously expressed enzyme with transamidating activity. We report here that both expression and activity of TG2 are enhanced in mammalian epithelial cells infected with the obligate intracellular bacteria Chlamydia trachomatis. Genetic or pharmacological inhibition of TG2 impairs bacterial development. We show that TG2 increases glucose import by up-regulating the transcription of the glucose transporter genes GLUT-1 and GLUT-3. Furthermore, TG2 activation drives one specific glucose-dependent pathway in the host, i.e., hexosamine biosynthesis. Mechanistically, we identify the glucosamine:fructose-6-phosphate amidotransferase (GFPT) among the substrates of TG2. GFPT modification by TG2 increases its enzymatic activity, resulting in higher levels of UDP-N-acetylglucosamine biosynthesis and protein O-GlcNAcylation. The correlation between TG2 transamidating activity and O-GlcNAcylation is disrupted in infected cells because host hexosamine biosynthesis is being exploited by the bacteria, in particular to assist their division. In conclusion, our work establishes TG2 as a key player in controlling glucose-derived metabolic pathways in mammalian cells, themselves hijacked by C. trachomatis to sustain their own metabolic needs
Scientific optimization of a ground-based CMB polarization experiment
We investigate the science goals achievable with the upcoming generation of
ground-based Cosmic Microwave Background polarization experiments and calculate
the optimal sky coverage for such an experiment including the effects of
foregrounds. We find that with current technology an E-mode measurement will be
sample-limited, while a B-mode measurement will be detector-noise-limited. We
conclude that a 300 sq deg survey is an optimal compromise for a two-year
experiment to measure both E and B-modes, and that ground-based polarization
experiments can make an important contribution to B-mode surveys. Focusing on
one particular experiment, QUaD, a proposed bolometric polarimeter operating
from the South Pole, we find that a ground-based experiment can make a high
significance measurement of the acoustic peaks in the E-mode spectrum, and will
be able to detect the gravitational lensing signal in the B-mode spectrum. Such
an experiment could also directly detect the gravitational wave component of
the B-mode spectrum if the amplitude of the signal is close to current upper
limits. We also investigate how a ground-based experiment can improve
constraints on the cosmological parameters. We estimate that by combining two
years of QUaD data with the four-year WMAP data, an optimized ground-based
polarization experiment can improve constraints on cosmological parameters by a
factor of two. If the foreground contamination can be reduced, the measurement
of the tensor-to-scalar ratio can be improved by up to a factor of six over
that obtainable from WMAP alone.Comment: 17 pages, 11 figures replaced with version accepted by MNRA
The Planck High Frequency Instrument, a 3rd generation CMB experiment, and a full sky submillimeter survey
The High Frequency Instrument (HFI) of Planck is the most sensitive CMB
experiment ever planned. Statistical fluctuations (photon noise) of the CMB
itself will be the major limitation to the sensitivity of the CMB channels.
Higher frequency channels will measure galactic foregrounds. Together with the
Low Frequency Instrument, this will make a unique tool to measure the full sky
and to separate the various components of its spectrum. Measurement of the
polarization of these various components will give a new picture of the CMB. In
addition, HFI will provide the scientific community with new full sky maps of
intensity and polarization at six frequencies, with unprecedented angular
resolution and sensitivity. This paper describes the logics that prevailed to
define the HFI and the performances expected from this instrument. It details
several features of the HFI design that have not been published up to now.Comment: To be published in the proceedings of the workshop on "The Cosmic
Microwave Background and its Polarization", New Astronomy Reviews, (eds., S.
Hanany and R.A. Olive
Planck intermediate results. XLI. A map of lensing-induced B-modes
The secondary cosmic microwave background (CMB) -modes stem from the
post-decoupling distortion of the polarization -modes due to the
gravitational lensing effect of large-scale structures. These lensing-induced
-modes constitute both a valuable probe of the dark matter distribution and
an important contaminant for the extraction of the primary CMB -modes from
inflation. Planck provides accurate nearly all-sky measurements of both the
polarization -modes and the integrated mass distribution via the
reconstruction of the CMB lensing potential. By combining these two data
products, we have produced an all-sky template map of the lensing-induced
-modes using a real-space algorithm that minimizes the impact of sky masks.
The cross-correlation of this template with an observed (primordial and
secondary) -mode map can be used to measure the lensing -mode power
spectrum at multipoles up to . In particular, when cross-correlating with
the -mode contribution directly derived from the Planck polarization maps,
we obtain lensing-induced -mode power spectrum measurement at a significance
level of , which agrees with the theoretical expectation derived
from the Planck best-fit CDM model. This unique nearly all-sky
secondary -mode template, which includes the lensing-induced information
from intermediate to small () angular scales, is
delivered as part of the Planck 2015 public data release. It will be
particularly useful for experiments searching for primordial -modes, such as
BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of
the lensing-induced contribution to the measured total CMB -modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map
is part of the PR2-2015 Cosmology Products; available as Lensing Products in
the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and
described in the 'Explanatory Supplement'
https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma
Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations
We present all-sky modelling of the high resolution Planck, IRAS, and WISE
infrared (IR) observations using the physical dust model presented by Draine
and Li in 2007 (DL). We study the performance and results of this model, and
discuss implications for future dust modelling. The present work extends the DL
dust modelling carried out on nearby galaxies using Herschel and Spitzer data
to Galactic dust emission. We employ the DL dust model to generate maps of the
dust mass surface density, the optical extinction Av, and the starlight
intensity parametrized by Umin. The DL model reproduces the observed spectral
energy distribution (SED) satisfactorily over most of the sky, with small
deviations in the inner Galactic disk and in low ecliptic latitude areas. We
compare the DL optical extinction Av for the diffuse interstellar medium with
optical estimates for 2 10^5 quasi-stellar objects (QSOs) observed in the Sloan
digital sky survey. The DL Av estimates are larger than those determined
towards QSOs by a factor of about 2, which depends on Umin. The DL fitting
parameter Umin, effectively determined by the wavelength where the SED peaks,
appears to trace variations in the far-IR opacity of the dust grains per unit
Av, and not only in the starlight intensity. To circumvent the model
deficiency, we propose an empirical renormalization of the DL Av estimate,
dependent of Umin, which compensates for the systematic differences found with
QSO observations. This renormalization also brings into agreement the DL Av
estimates with those derived for molecular clouds from the near-IR colours of
stars in the 2 micron all sky survey. The DL model and the QSOs data are used
to compress the spectral information in the Planck and IRAS observations for
the diffuse ISM to a family of 20 SEDs normalized per Av, parameterized by
Umin, which may be used to test and empirically calibrate dust models.Comment: Final version that has appeared in A&
Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect--cosmic infrared background correlation
We use Planck data to detect the cross-correlation between the thermal
Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that
make up the the cosmic infrared background (CIB). We first perform a stacking
analysis towards Planck-confirmed galaxy clusters. We detect infrared emission
produced by dusty galaxies inside these clusters and demonstrate that the
infrared emission is about 50% more extended than the tSZ effect. Modelling the
emission with a Navarro--Frenk--White profile, we find that the radial profile
concentration parameter is . This indicates
that infrared galaxies in the outskirts of clusters have higher infrared flux
than cluster-core galaxies. We also study the cross-correlation between tSZ and
CIB anisotropies, following three alternative approaches based on power
spectrum analyses: (i) using a catalogue of confirmed clusters detected in
Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps;
and (iii) using cross-spectra between Planck frequency maps. With the three
different methods, we detect the tSZ-CIB cross-power spectrum at significance
levels of (i) 6 , (ii) 3 , and (iii) 4 . We model the
tSZ-CIB cross-correlation signature and compare predictions with the
measurements. The amplitude of the cross-correlation relative to the fiducial
model is . This result is consistent with
predictions for the tSZ-CIB cross-correlation assuming the best-fit
cosmological model from Planck 2015 results along with the tSZ and CIB scaling
relations.Comment: 18 pages, 16 figure
Planck 2013 results. XXII. Constraints on inflation
We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0:9603 _ 0:0073, ruling out exact scale invariance at over 5_: Planck establishes an upper bound on the tensor-to-scalar ratio of r < 0:11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V00 < 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n _ 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns=dln k = 0:0134 _ 0:0090. We verify these conclusions through a numerical analysis, which makes no slowroll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by __2 e_ _ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the _2 e_ by approximately 4 as a result of slightly lowering the theoretical prediction for the ` <_ 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions
The Planck high-frequency instrument: a third-generation CMB probe and the first submillimeter surveyor
The High Frequency Instrument of the Planck satellite is dedicated to the measurement of the anisotropy of the Cosmic Microwave Background (CMB). Its main goal is to map the CMB with a sensitivity of ΔT/T=2.10^(-6) and an angular resolution of 5 arcmin in order to constrain cosmological parameters. Planck is a project of the European Space Agency based on a wide international collaboration, including United States and Canadian laboratories. The architecture of the satellite is driven by the thermal requirements resulting from the search for low photon noise. Especially, the passively cooled telescope should be at less than 50K, while a cascade of cryo-coolers will ensure the cooling of the HFI bolometers down to 0.1K. This last temperature will be produced by a gravity insensitive 3He/4He dilution cooler. This will be achieved at the L2 Lagrangian point of the Sun-Earth system. The whole sky will be observed two times in the 14 months mission with a scanning strategy based on a 1RPM rotation of the satellite. In addition to the cosmological parameters that can be derived from the CMB maps, Planck will deliver nine high sensitivity submillimeter maps of the whole sky that will constitute unique data available to the whole astronomical community
- …