481 research outputs found

    Numerical simulation of roll waves in pipelines using the two-fluid model

    Get PDF
    A finite volume discretization of the incompressible two-fluid model in four-equation form is proposed for simulating roll waves appearing in multiphase pipelines. The new formulation has two important advantages compared to existing roll wave simulators: (i) it is conservative by construction, meaning that the correct shock magnitude is obtained at the hydraulic jump, and (ii) it can be more easily extended with additional physics (e.g. Compressibility, axial diffusion, surface tension), without rederiving the model equations. A simple, robust, first-order upwind discretization of the four-equation model is able to capture the roll wave profiles, although a fine grid is needed to achieve converged results. The four-equation model leads to new roll wave solutions that differ from existing analytical and numerical results. Our solutions are believed to be physically more correct because the shock relations satisfy physically conserved quantities

    Thermally induced directed currents in hard rod systems

    Full text link
    We study the non equilibrium statistical properties of a one dimensional hard-rod fluid undergoing collisions and subject to a spatially non uniform Gaussian heat-bath and periodic potential. The system is able to sustain finite currents when the spatially inhomogeneous heat-bath and the periodic potential profile display an appropriate relative phase shift, ϕ\phi. By comparison with the collisionless limit, we determine the conditions for the most efficient transport among inelastic, elastic and non interacting rods. We show that the situation is complex as, depending on shape of the temperature profile, the current of one system may outperform the others.Comment: 5 pages, 2 figure

    Markov Chain Generative Adversarial Neural Networks for solving Bayesian inverse problems in physics applications

    Get PDF
    In the context of solving inverse problems for physics applications within a Bayesian framework, we present a new approach, Markov Chain Generative Adversarial Neural Networks (MCGANs), to alleviate the computational costs associated with solving the Bayesian inference problem. GANs pose a very suitable framework to aid in the solution of Bayesian inference problems, as they are designed to generate samples from complicated high-dimensional distributions. By training a GAN to sample from a low-dimensional latent space and then embedding it in a Markov Chain Monte Carlo method, we can highly efficiently sample from the posterior, by replacing both the high-dimensional prior and the expensive forward map. We prove that the proposed methodology converges to the true posterior in the Wasserstein-1 distance and that sampling from the latent space is equivalent to sampling in the high-dimensional space in a weak sense. The method is showcased on three test cases where we perform both state and parameter estimation simultaneously. The approach is shown to be up to two orders of magnitude more accurate than alternative approaches while also being up to an order of magnitude computationally faster, in several test cases, including the important engineering setting of detecting leaks in pipelines

    Energy-conserving formulation of the two-fluid model for incompressible two-phase flow in channels and pipes

    Get PDF
    We show that the one-dimensional (1D) two-fluid model (TFM) for stratified flow in channels and pipes (in its incompressible, isothermal form) satisfies an energy conservation equation, which arises naturally from the mass and momentum conservation equations that constitute the model. This result extends upon earlier work on the shallow water equations (SWE), with the important difference that we include non-conservative pressure terms in the analysis, and that we propose a formulation that holds for ducts with an arbitrary cross-sectional shape, with the 2D channel and circular pipe geometries as special cases. The second novel result of this work is the formulation of a finite volume scheme for the TFM that satisfies a discrete form of the continuous energy equation. This discretization is derived in a manner that runs parallel to the continuous analysis. Due to the non-conservative pressure terms it is essential to employ a staggered grid, which requires careful consideration in defining the discrete energy and energy fluxes, and the relations between them and the discrete model. Numerical simulations confirm that the discrete energy is conserved

    Markov chain generative adversarial neural networks for solving Bayesian inverse problems in physics applications

    Get PDF
    In the context of solving inverse problems for physics applications within a Bayesian framework, we present a new approach, the Markov Chain Generative Adversarial Neural Network (MCGAN), to alleviate the computational costs associated with solving the Bayesian inference problem. GANs pose a very suitable framework to aid in the solution of Bayesian inference problems, as they are designed to generate samples from complicated high-dimensional distributions. By training a GAN to sample from a low-dimensional latent space and then embedding it in a Markov Chain Monte Carlo method, we can highly efficiently sample from the posterior, by replacing both the high-dimensional prior and the expensive forward map. This comes at the cost of a potentially expensive offline stage in which training data must be simulated or gathered and the GAN has to be trained. We prove that the proposed methodology converges to the true posterior in the Wasserstein-1 distance and that sampling from the latent space is equivalent to sampling in the high-dimensional space in a weak sense. The method is showcased in two test cases where we perform both state and parameter estimation simultaneously and it is compared with two conventional approaches, polynomial chaos expansion and ensemble Kalman filter, and a deep learning-based approach, deep Bayesian inversion. The method is shown to be more accurate than alternative approaches while also being computationally faster, in multiple test cases, including the important engineering setting of detecting leaks in pipelines

    Energy-consistent formulation of the pressure-free two-fluid model

    Get PDF
    The pressure-free two-fluid model (PFTFM) is a recent reformulation of the one-dimensional two-fluid model (TFM) for stratified incompressible flow in ducts (including pipes and channels), in which the pressure is eliminated through intricate use of the volume constraint. The disadvantage of the PFTFM was that the volumetric flow rate had to be specified as an input, even though it is an unknown quantity in case of periodic boundary conditions. In this work, we derive an expression for the volumetric flow rate that is based on the demand for energy (and momentum) conservation. This leads to PFTFM solutions that match those of the TFM, justifying the validity and necessity of the derived choice of volumetric flow rate. Furthermore, we extend an energy-conserving spatial discretization of the TFM, in the form of a finite volume scheme, to the PFTFM. We propose a discretization of the volumetric flow rate that yields discrete momentum and energy conservation. The discretization is extended with an energy-conserving discretization of the source terms related to gravity acting in the streamwise direction. Our numerical experiments confirm that the discrete energy is conserved for different problem settings, including sloshing in an inclined closed tank, and a traveling wave in a periodic domain. The PFTFM solutions and the volumetric flow rates match the TFM solutions, with reduced computation time, and with exact momentum and energy conservation

    Energy-conserving formulation of the two-fluid model for incompressible two-phase flow in channels and pipes

    Get PDF
    We show that the one-dimensional (1D) two-fluid model (TFM) for stratified flow in channels and pipes (in its incompressible, isothermal form) satisfies an energy conservation equation, which arises naturally from the mass and momentum conservation equations that constitute the model. This result extends upon earlier work on the shallow water equations (SWE), with the important difference that we include non-conservative pressure terms in the analysis, and that we propose a formulation that holds for ducts with an arbitrary cross-sectional shape, with the 2D channel and circular pipe geometries as special cases. The second novel result of this work is the formulation of a finite volume scheme for the TFM that satisfies a discrete form of the continuous energy equation. This discretization is derived in a manner that runs parallel to the continuous analysis. Due to the non-conservative pressure terms it is essential to employ a staggered grid, which requires careful consideration in defining the discrete energy and energy fluxes, and the relations between them and the discrete model. Numerical simulations confirm that the discrete energy is conserved

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    • 

    corecore