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A finite volume discretization of the incompressible two-fluid model in four-equation form 
is proposed for simulating roll waves appearing in multiphase pipelines. The new 
formulation has two important advantages compared to existing roll wave simulators: (i) 
it is conservative by construction, meaning that the correct shock magnitude is obtained at 
the hydraulic jump, and (ii) it can be more easily extended with additional physics (e.g. 
compressibility, axial diffusion, surface tension), without rederiving the model equations.  
 
A simple, robust, first-order upwind discretization of the four-equation model is able to 
capture the roll wave profiles, although a fine grid is needed to achieve converged results. 
The four-equation model leads to new roll wave solutions that differ from existing 
analytical and numerical results. Our solutions are believed to be physically more correct 
because the shock relations satisfy physically conserved quantities.  
 
 
1 INTRODUCTION 
 
The design and maintenance of flow assurance systems involves complex multiphase flow 
through pipelines. The behaviour of this multiphase flow can take many forms (flow 
regimes), depending on parameters like flow rates, fluid properties and pipeline properties. 
An important flow regime is slug flow, in which liquid pockets, separated by gas bubbles, 
propagate in an alternating fashion with high speed along the pipeline. These slugs can 
have a large influence on the system design, such as required support (to handle the induced 
bend forces, vibrations, fatigue) and the size of the separator and liquid drain rate capacity. 
In order to assure adequate system design and continued operation, numerical simulations 
play an important role. Many numerical simulations are based on the one-dimensional two-
fluid model, examples are the engineering design tools such as OLGA or LedaFlow [4,14]. 
However, the conventional two-fluid model has an issue of conditional well-posedness: 
under certain conditions, grid refinement does not yield unique solutions. A significant 
amount of scientific effort has been devoted towards resolving this issue, for example by 
inclusion of surface tension, artificial diffusion, virtual mass, momentum flux parameters, 
and a separate pressure for each phase. However, a fully satisfactory solution that results 
in grid-independent slug capturing results is still missing. 
 
In this work, instead of studying directly slug flow, we assess the capabilities of the two-
fluid model in capturing a travelling-wave surface instability named roll waves. Although 
roll waves are not as vigorous as slugs, the availability of analytical solutions yields the 
possibility to study the issues of well-posedness and stability of the two-fluid model in 
detail; understanding roll waves thus forms an important step towards performing accurate 
and reliable slug capturing with the two-fluid model. 
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Roll wave modelling and simulation attempts are not new, and the theoretical foundations 
were laid down firstly by Dressler [7] for shallow water equations and then by Watson [23] 
using the two-fluid model for flow in pipelines. Johnson [12] performed an experimental 
study of roll waves and compared these with an analytical model similar to Watson. 
Numerical simulations of roll waves based on solving the two-fluid model equations are 
relatively scarce - recent studies are the ones of Akselsen [2] and Holmås [9]. Akselsen 
uses a two-equation formulation of the two-fluid model and shows that properly designed 
characteristics methods outperform a finite volume method with a Roe scheme, when 
comparing to an analytical roll wave solution. Holmås uses the same two-equation 
formulation which he solves with a pseudo-spectral method. His results compare relatively 
well with the experiments of Johnson [12] and roll waves are obtained for a relatively wide 
selection of initial conditions.  
 
There are however two issues related to these approaches to roll wave modelling and 
simulation. Firstly, the reformulation of the equations into a two-equation model is strictly 
not valid when discontinuous solutions (such as roll waves) are present, leading to a 
difference in jump conditions between the four-equation model and the two-equation 
model. This was also noted by both Watson [23] and Akselsen [1]. Secondly, in practice 
many multiphase flow pipeline simulators (both commercial [4,14] as well as academic 
codes [11,8]) do not employ purpose-made numerical schemes such as the characteristics 
methods by Akselsen [2] or the pseudospectral method by Holmås [9]. Instead, the 
`standard' conservative four-equation model is used, which is discretized with an upwind-
type spatial discretization method. This four-equation model is more amenable for 
extension with additional physics, such as compressibility, dispersion and entrainment of 
bubbles and droplets, temperature effects, etc. 
 
Two open questions are therefore: (i) is the two-fluid model in the standard (four-equation) 
form, discretized with an upwind-based finite volume method, able to capture roll wave 
solutions, and (ii) do these solutions differ from the roll wave solutions of the two-equation 
model. These are the questions that we will answer in this work.  
 
The paper outline is as follows. In section 2 the governing equations of the two-fluid model 
and the recipe for constructing analytical roll wave solutions are given. In section 3 our 
numerical method in terms of spatial and temporal discretization is described. Section 4 
shows numerical roll wave solutions based on the test case parameters of Johnson [12] and 
Akselsen [2], including a comparison with analytically obtained solutions. Finally, in 
section 5 conclusions and directions for future work are given. 
 
 
2 GOVERNING EQUATIONS AND ROLL WAVES 
 
2.1 The two-fluid model 
The two-fluid model can be derived by considering the stratified flow of liquid and gas in 
a pipeline (for a recent discussion of the two-fluid model, see for example [18]). The main 
assumptions that we make are that the flow is one-dimensional, incompressible, stratified, 
and isothermal. Transverse pressure variation is introduced via level gradient terms. 
Surface tension is neglected. This leads to the following equations for conservation of mass 
and momentum of each phase:  

 

t


g
A

g   
s


g
u

g
A

g    0,   (1) 
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
t


l
A

l   
s


l
u

l
A

l   =0,   (2) 

   (3) 

   (4) 

supplemented with the volume constraint equation, 
 
 A

g
 A

l
 A.   (5) 

In these equations the subscript denotes either gas (g) or liquid (l). The model features four 
evolution equations, one constraint equation, and five unknowns (Ag, Al, ug, ul, p), which 
are a function of the independent variables s (coordinate along the pipeline axis) and t 
(time).   denotes the density (assumed constant), A the cross-sectional area of the pipe, 
Ag, and Al (also referred to as the hold-ups) the cross-sectional areas occupied by the gas 
or liquid, R the pipe radius, h the height of the liquid layer measured from the bottom of 
the pipe, u the phase velocity, p the pressure at the interface,   the shear stress (with the 
wall or at the interface), g the gravitational constant,   the local inclination of the pipeline 
with respect to the horizontal, such that g

n
 g cos  and g

s
 g sin . 

 
The level gradient terms LG are given by [20]: 

 LG
g
 

HG
g

s
, HG

g
 

g
g

n
(R  h)A

g


1

12
P

gl
3







 ,   (6) 

 LG
l
 

HG
l

s
, HG

l
 

l
g

n
(R  h) A

l


1

12
P

gl
3







.  (7) 

For incompressible flow these expressions simplify to LG
g
 

g
g

n
A

g

h

s
, 

LG
l
 

l
g

n
A

l

h

s
, but we stick to the form displayed in equations (6)-(7) because this 

form is conservative. Al and h are related by a non-linear algebraic expression. The wetted 
and interfacial perimeters Pg, Pl and Pgl can similarly be expressed in terms of the hold-up 
Al or the interface height h (see [20]). 
 

The driving pressure force b
body

odydp
F

ds
   in the gas and liquid momentum equations is 

required for our simulations because they involve periodic boundary conditions. As 
friction model we use the Biberg friction model, see [6, 10, 1], which provides (implicit) 
expressions for 

g
,  l  and 

gl
. The Biberg model is based on turbulent interaction between 

the two-phases. The flow in both the fluids is governed by an algebraic eddy viscosity 
distribution from which analytical velocity distributions are derived, which in turn leads to 
a consistent set of wall and interfacial friction formulas. Compared to a ‘standard’ friction 
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model, in which the interfacial friction factor is expressed as a multiple of the gas friction 
factor (see e.g. [12, 10]), the Biberg model acts as an additional means of stabilization, 
especially for higher hold-up levels [10].  
 
Initial and boundary conditions determine whether the equations form a well-posed initial 
boundary value problem. It is well-known that, depending on the velocity difference 
between the phases, the two-fluid model equations can become ill-posed [3, 19, 22]. In this 
paper we restrict ourselves to test cases for which the model is well-posed. Additionally, 
the initial conditions will determine whether disturbances will grow (unstable) or damp in 
time (stable). For roll wave simulation such an unstable mode will be used to trigger wave 
growth that leads to shock formation. 
 
2.2 Two-equation model 
The roll wave simulations of Holmås [10] and Akselsen [2] are based on a two-equation 
reformulation of the incompressible two-fluid model equations (1)-(5). The first equation 
is typically the liquid hold-up equation in incompressible form, 

 

t

A
l   

s
u

l
A

l   0.    (8) 

The second equation is an equation for the difference in momenta, in which the pressure 
has been eliminated: 

 

t

lul  gug   
s

1

2
lul

2  gug
2 




 (l  g )gn

h

s


S
l

A
l


S

g

A
g

.  (9) 

The system is closed with the volume constraint (5) and the volumetric flow constraint 

 A
g
u

g
 A

l
u

l
 Q(t),   (10) 

where Q(t) is the total volumetric flow rate. We note that this ‘pressure-free’ two-equation 
model is only equivalent to the four-equation two-fluid model for sufficiently smooth 
solutions. In case shock waves appear in the solution, as is the case for roll waves, the 
pressure-free model is not equivalent [1, 15] and should in principle not be used. Although 
the difference between the conservative and non-conservative system is small in the case 
of weak shocks [23, 1], we consider the four-equation model to be the most physically 
sound model and it will therefore be used in our numerical simulations.  
 
2.3 Analytical roll wave model 
Roll waves are specific travelling-wave analytical solutions of the incompressible two-
fluid model, which feature a transition from supercritical to subcritical flow through a 
discontinuity (a hydraulic jump). A demonstrative roll wave profile is presented in figure 
1.  
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Figure 1: Schematic of a roll wave profile in the moving reference frame. 

 
Watson derived a procedure for obtaining analytical roll wave solutions for the 
incompressible two-fluid model [23], which we shortly summarize here. The main step is 
to transform the partial differential equations (1)-(4) into an ordinary differential equation 
(ODE) describing the interface, by applying the coordinate transformation 

 X  x Ct,   (11) 

assuming that waves exist travelling with a constant wave speed C. After the coordinate 
transformation the mass balance equations can be integrated directly to yield 

 Ag ug C   Kg and Al ul C   Kl ,   (12) 

where Kg  and Kl are constants, namely the progressive discharge rate of gas and liquid 
respectively. The momentum balance equations reduce to a single ODE for the liquid hold-
up h: 

 
dh

dX


E

D
,   (13) 

where 

 E  H
S

l

A
l


S

g

A
g









 ,   (14) 

 D  l  g gn H  l ul C 2
 g

A
l

A
g

ug C 2

,   (15) 

 H 
Al

dA
l

dh








Al

P
lg

.  (16) 

When the flow transitions from subcritical to supercritical it goes smoothly through the 
critical point hcrit at which E and D should have a common root. On the other hand, the 
flow transition from supercritical to subcritical is accomplished through a hydraulic jump. 
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The jump condition follows by integrating equation (9) over an infinitesimally small 
volume 

 
l
 

g g
n
h

1

2


l

K
l
2

A
l
2


1

2


g

K
g

2

A
g

2













hmin

hmax

 0.  (17) 

Note again, that this shock condition is not a momentum conserving condition. Instead it 
conserves a difference in the momentum of two phases. 
 
 
3 NUMERICAL METHOD 
 
3.1 Spatial discretization 
The spatial discretization is on a staggered grid, consisting of N ‘pressure’ and N+1 
‘velocity’ volumes. The midpoints of the velocity volumes lie on the faces of the pressure 
volumes, as indicated in figure 2. The pressure, density, hold-up and mass are defined in 
the centre of the pressure volumes, whereas the velocity and momentum are defined in the 
centre of the velocity volumes. For details we refer to [20, 21]. The unknowns are given 
by the vector of conservative variables U(t): 

 U (t) 

m
g

m
l

I
g

I
l























[(
g
A

g
)

1
(

g
A

g
)

N
]T

[(
l
A

l
)

1
(

l
A

l
)

N
]T

[(g Agug )1/2(g Agug )N1/2 ]T

[(
l
A

l
u

l
)

1/2
(

l
A

l
u

l
)

N1/2
]T























,   (18) 

and the pressure: 

 p(t)  [ p
1
p

N
]T .  (19) 

Note that mg, ml, Ig and Il, are vectors, containing mass and momentum (per unit pipe 
length) at the pressure and velocity volumes, respectively. U(t) and p(t) are both a function 
of time only. 
 
We start with conservation of mass for phase  (  is liquid or gas). Integration of equation 
(2) in s-direction over a pressure volume gives:  

 
d

dt
m ,i

s
i   I ,i1/2

 I ,i1/2
 0,  (20) 

where the convective fluxes can be directly expressed in terms of the momenta I at the 
staggered locations, so no approximation is involved in this term.  
 
For conservation of momentum we proceed in a similar way. Integration of (4) in s-
direction over a velocity volume gives: 

d

dt
I ,i1/2

s
i1/2   A 

i1
(u ,i1

)2   A 
i
(u ,i

)2  A ,i1/2
p

i1
 p

i  LG  ,i1/2
 S ,i1/2

s
i1/2

. 

 (21) 

and the level gradient terms for the gas and liquid are given by (+ for gas, - for liquid)  
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 LG  ,i1/2  gn (R  h)A 
1

12
Pgl

3





i

 (R  h) A 
1

12
Pgl

3





i1









 .  (22) 

The convective terms in (21) are given by a first order upwind scheme, e.g. ui+1 = ui+1/2 
when ui+1/2> 0. The system is closed with the volume constraint (5). 
 

 
Figure 2: Staggered grid layout. 

 
3.2 Temporal discretization 
The temporal discretization of the semi-discrete equations arising after spatial 
discretization is performed with the half-explicit Runge-Kutta method described in [21]. 
This method is explicit for the mass and momentum equations and implicit for the volume 
constraint equation, which is solved via a pressure Poisson equation. In the simulations in 
this work the RK4 method from [21] is used, which is fourth order accurate for all variables 
(hold-up fraction, phase velocities, pressure), and requires a CFL-type time-step restriction 
based on the eigenvalues of the two-fluid model. The fourth order accurate scheme makes 
the temporal discretization error negligible compared to the spatial discretization error. 
 
 
4 ROLL WAVE SIMULATION RESULTS 
 
4.1 Test case description and flow pattern map 
An important database with experimentally observed roll waves has been provided in the 
work of Johnson [12, 13]. His experiments concerned the stratified flow of water and SF6 

at the IFE lab in Kjeller, Norway. The test case parameters from his set-up are shown in 
table 1. These test case parameters are also used in the works of Holmås [10, 9] and 
Akselsen [2]. Holmås [9] does not make a comparison with analytical roll wave solutions, 
but concentrates on the comparison with the experimental data of Johnson. Akselsen [2] 
on the other hand does not perform a comparison with experimental data but focuses solely 
on the convergence of the characteristics methods towards the analytical solution upon grid 
refinement. In our test case we follow the approach of Akselsen, i.e. comparison with the 
analytical solution. 
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Table 1: Parameter values for experimental roll wave investigation used by  
Johnson [13]. 

parameter value unit 


l  998 kg/m3 


g

 50 kg/m3 

 R 0.05 m 


g

 1.61 10-5 Pa s 


l  9.98 10-3 Pa s 

 0, 0.1, 0.25, 1, 2.5, 5 deg 
 2 10-5 m 

 
We concentrate on the case of   1 . A flow pattern map is constructed by performing a 
viscous Kelvin-Helmholtz analysis and drawing the neutral stability line. Figure 3 shows 
the resulting stable and unstable regions, which is similar to the one presented in Holmås 
[10]. We note that the neutral stability line of the ‘standard’ interfacial friction model 
f

i
 f

g
 as mentioned by Holmås is not visible in this figure - it appears at much lower 

superficial velocities than the ones considered in this figure. Analytical roll wave solutions 
could not be constructed for this condition. Similarly, for the interfacial stress model 
considered in Liao et al. [17] (namely f

i
 max( f

g
,0.014) ), no roll waves exist because 

the considered initial conditions for the dynamic simulation (as indicated by the open 
symbol in figure 3) within the VKH stability boundary (given by the dashed line in figure 
3). With the Biberg friction model, roll waves can be simulated, as the considered 
conditions lie just outside the VKH stability curve (the solid line in figure 3). 
 

 
Figure 3: Flow pattern map for   1  (a similar graph is in Holmås, figure 2-c [10]. 

Dashed line is when simulating with the standard model with f
i
 max( f

g
,0.014) . 

The standard model with f
i
 f

g
 is unstable for this range of conditions. 

 
4.2 Comparison numerical and analytical roll waves 
We will now compare numerically generated roll waves with analytical solutions. As initial 
condition we take the flow rate and hold-up value from Akselsen [2]: Qtot/A = 3.4 m/s, 
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h
l
/ D  0.2 . Solving the steady-state momentum equation E=0 yields the following initial 

superficial velocities and driving pressure gradient:  

 u
sg
 3.245 m/s,   (23) 

 u
sl
 0.155 m/s,  (24) 

 F
body


dp

body

dx
 124.997  Pa/m.   (25) 

This case is shown on the flow pattern map in figure 3. At these superficial velocities, the 
analytical roll wave solution with a (pre-set) roll wave length   3m is given by [2]:  

 C 1.4408m/s,   (26) 

 h  h
max

 h
min

 0.0996D  0.00996  m.  (27) 

To numerically simulate these roll waves, we take a domain of length L    with periodic 
boundary conditions and discretize the domain in N = 80, 160, 320, 640 and 1280 grid 
points. The number of grid points per diameter, D / s , is approximately 2.5, 5, 10, 20 and 
40 respectively. Note that for N = 40 no roll wave solution was found (the initial wave 
damped out). A period of 200 seconds is simulated, corresponding to approximately 150 
wave revolutions, indicating an equivalent pipeline of length of 450 m. For the two finest 
grids 100 seconds are simulated. A time step of t  (2 / 3)L / N is used, which 
corresponds roughly to a CFL number of 1 based on the largest maximum eigenvalue 
(which is around 1.5 m/s). The initial condition is a single wave with a hold-up amplitude 
of 0.01, wave number k  2 / L and angular frequency chosen such that a single, unstable, 
wave is triggered [20]. 
 
An example of the roll wave shape at different time instances is shown in figure 4 in terms 
of the hold-up and the pressure (after t = 100 s the shape remains virtually unchanged, see 
also figure 6).  
 

 
Figure 4: Temporal evolution of roll wave for N=160 in terms of hold-up and 
deviation from the background pressure. Note that each 15 seconds the roll  

wave has travelled 10 times through the domain. 
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Figure 5 shows the roll wave solution at the end of the simulation (t = 200 s) for several 
grids (shifted such that their maxima are coinciding). It is clear that convergence of the 
wave shape and pressure profile is obtained upon grid refinement, answering the first 
question posed in the introduction: the two-fluid model in four-equation form, discretized 
with a first-order upwind method is able to capture roll waves, and converged solutions 
are obtained on fine grids. On coarse grids the roll wave profiles are smeared out, which 
is due to the artificial diffusion added by the first order upwind scheme as used in the 
momentum equation.  
 

 
Figure 5: Convergence of wave shape and pressure profile as a function of the 

number of grid points. 
 
The temporal evolution of the magnitude of the hydraulic jump and of the maximum hold-
up level is shown in figure 6. On finer grids, the wave growth is faster, and a steady roll 
wave solution is obtained earlier in time. 
 

 
Figure 6: Temporal evolution of hydraulic jump for different grid sizes. 
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Next, we investigate the convergence of wave speed and jump magnitude towards the 
analytically predicted values. The wave speed C is computed numerically by tracking the 
location of maximum hold-up and then computing the derivative by finite differences. The 
jump magnitude is computed as the difference between the maximum and minimum hold-
up values (converted into liquid heights). Interestingly, as can be observed in figure 7, the 
roll waves do not converge exactly towards the wave speed C and hydraulic jump 
magnitude h  as predicted by the analytical solution. The difference is due to the fact that 
our method is based on the four-equation model, which exhibits different shock solutions 
than the two-equation model used by Akselsen and Holmås and used to generate the 
analytical results. This answers the second question posed in the introduction: the four-
equation model shock solutions differ from the two-equation model solutions. Since the 
four-equation model is based on the physically conserved quantities, we believe our 
formulation and corresponding results to be more physical. For the current test case the 
difference is relatively small, because the shock is rather weak, but in general this will 
depend on the test case under consideration. 

 

 

Figure 7: Convergence of wave speed C and jump magnitude h / D  as a function 
of the number of grid points. 

 
 
5 CONCLUSION 
 
The questions addressed in this work were whether the two-fluid model in the standard 
(four equation) form, discretized with a conventional upwind-based finite volume method, 
is able to capture roll wave solutions, and whether these differ from roll wave solutions 
obtained with a two-equation model. We have shown that a finite volume discretization of 
the two-fluid model equations is indeed able to simulate roll waves appearing in multiphase 
pipelines, and that small differences appear compared to the two-equation model results. 
We believe our formulation to be more physical, and it has two important advantages 
compared to existing roll wave simulators described in the literature: (i) it is conservative 
by construction, meaning that the correct shock magnitude is obtained at the hydraulic 
jump, and (ii) it can be more easily extended with additional physics (e.g. compressibility, 
axial diffusion, surface tension), without rederiving the model equations.  
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The success of performing roll wave simulations with a relatively standard finite volume 
discretization paves the way for more complex simulations. First, a more accurate (i.e. high 
order) spatial discretization will reduce the numerical diffusion introduced and will 
subsequently reduce the number of required grid points. Currently, reasonable results are 
obtained with 5 grid points per diameter, which can be prohibitive when long pipeline 
systems are considered. Second, when the superficial velocities are increased, roll waves 
can transition into slug flow. The behaviour of both the analytical and numerical roll wave 
model under these conditions, and how to avoid the occurring of ill-posed results, are the 
next steps in developing accurate slug capturing methods. 
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APPENDIX 
 
The following geometric identities are used to express the wall perimeters, interfacial 
perimeter, and liquid height in terms of the wetted angle 

l
 and pipe diameter D  2R : 

 P
gl
 Dsin

l
,   (28) 

 P
l
 D

l
,   (29) 

 P
g
 D  

l ,   (30) 

 h 
1

2
D 1 cos

l .  (31) 

We use Biberg's approximation [5] to express  l  in terms of  l : 

  l   l 
3
2







1

3

1 2 l  l

1

3  g

1

3






.  (32) 

 

 
Figure 8: Stratified flow layout and definitions. 
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