18 research outputs found

    Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection

    Get PDF
    Co-infection with Mycobacterium tuberculosis is the leading cause of death in individuals infected with HIV-1. It has long been known that HIV-1 infection alters the course of M. tuberculosis infection and substantially increases the risk of active tuberculosis (TB). It has also become clear that TB increases levels of HIV-1 replication, propagation and genetic diversity. Therefore, co-infection provides reciprocal advantages to both pathogens. In this Review, we describe the epidemiological associations between the two pathogens, selected interactions of each pathogen with the host and our current understanding of how they affect the pathogenesis of TB and HIV-1/AIDS in individuals with co-infections. We evaluate the mechanisms and consequences of HIV-1 depletion of T cells on immune responses to M. tuberculosis. We also discuss the effect of HIV-1 infection on the control of M. tuberculosis by macrophages through phagocytosis, autophagy and cell death, and we propose models by which dysregulated inflammatory responses drive the pathogenesis of TB and HIV-1/AIDS

    Modulation of cell-mediated immunity by HIV-1 infection of macrophages

    Get PDF
    Cell-mediated immunity (CMI) is central to the host response to intracellular pathogens such as Mycobacterium tuberculosis (Mtb). The function of CMI can be modulated by human immunodeficiency virus (HIV)-1 via its pleiotropic effects on the immune response, including modulation of macrophages, which are parasitized by both HIV-1 and Mtb. HIV-1 infection is associated with increased risk of tuberculosis (TB), and so in this thesis I sought to explore the host/pathogen interactions through which HIV-1 dysregulates CMI, and thus changes the natural history of TB. Using an in vitro model of human monocyte-derived macrophages (MDMs), I characterise a phenotype wherein HIV-1 specifically attenuates production of the immunoregulatory cytokine interleukin (IL)-10 in response to Mtb and other innate immune stimuli. I show that this phenotype requires HIV-1 integration and gene expression, and may result from a function of the HIV-1 accessory proteins. I identify that the phosphoinositide 3-kinase (PI3K) pathway specifically regulates IL-10 production in human MDMs, and thus may be a target for HIV-1 to mediate IL-10 attenuation. I show that HIV-1 may attenuate IL-10 to maximise its own replication, and identify potential consequences of IL-10 attenuation for CMI. By using the tuberculin skin test (TST) as a human challenge model, I evaluate HIV-1 modulation of CMI in vivo in active TB patients, and demonstrate IL-10 attenuation in this context. I identify a role for type I inteferons (IFNs) in HIV-1 anergy, and observe exaggerated T helper 2 responses associated with the immune reconstitution inflammatory syndrome (IRIS). To fully explore CMI in vivo by transcriptional profiling, I utilize the transcriptional heterogeneity of stimulated macrophages to develop a modular analysis strategy for transcriptional profiles, and apply this in the TST model. My results delineate novel modulatory effects of HIV-1 on the function of CMI, and thus provide insights into immunopathogenesis in HIV-1/TB co-infection

    An adult presentation consistent with PIMS-TS

    Get PDF

    Paradoxical reactions and immune reconstitution inflammatory syndrome in tuberculosis

    Get PDF
    The coalescence of the HIV-1 and tuberculosis (TB) epidemics in Sub-Saharan Africa has had a significant and negative impact on global health. The availability of effective antimicrobial treatment for both HIV-1 (in the form of highly active antiretroviral therapy (HAART)) and TB (with antimycobacterial agents) has the potential to mitigate the associated morbidity and mortality. However, the use of both HAART and antimycobacterial therapy is associated with the development of inflammatory paradoxical syndromes after commencement of therapy. These include paradoxical reactions (PR) and immune reconstitution inflammatory syndromes (IRIS), conditions that complicate mycobacterial disease in HIV seronegative and seropositive individuals. Here, we discuss case definitions for PR and IRIS, and explore how advances in identifying the risk factors and immunopathogenesis ofthese conditions informs our understanding of their shared underlying pathogenesis. We propose that both PR and IRIS are characterized by the triggering of exaggerated inflammation in a setting of immunocompromise and antigen loading, via the reversal of immunosuppression by HAART and/or antimycobacterials. Further understanding of the molecular basis of this pathogenesis may pave the way for effective immunotherapies for the treatment of PR and IRIS

    Delayed healthcare seeking and prolonged illness in healthcare workers during the COVID-19 pandemic: a single-centre observational study

    Get PDF
    Objectives: To describe a cohort of self-isolating healthcare workers (HCWs) with presumed COVID-19. / Design: A cross-sectional, single-centre study. / Setting: A large, teaching hospital based in Central London with tertiary infection services. / Participants: 236 HCWs completed a survey distributed by internal staff email bulletin. 167 were women and 65 men. / Measures: Information on symptomatology, exposures and health-seeking behaviour were collected from participants by self-report. / Results: The 236 respondents reported illness compatible with COVID-19 and there was an increase in illness reporting during March 2020 Diagnostic swabs were not routinely performed. Cough (n=179, 75.8%), fever (n=138, 58.5%), breathlessness (n=84, 35.6%) were reported. Anosmia was reported in 42.2%. Fever generally settled within 1 week (n=110/138, 88%). Several respondents remained at home and did not seek formal medical attention despite reporting severe breathlessness and measuring hypoxia (n=5/9, 55.6%). 2 patients required hospital admission but recovered following oxygen therapy. 84 respondents (41.2%) required greater than the obligated 7 days off work and 9 required greater than 3 weeks off. / Conclusion: There was a significant increase in staff reporting illness compatible with possible COVID-19 during March 2020. Subsequent serology studies at the same hospital study site have confirmed sero-positivity for COVID-19 up to 45% by the end of April 2020 in frontline HCWs. The study revealed a concerning lack of healthcare seeking in respondents with significant red flag symptoms (severe breathlessness, hypoxia). This study also highlighted anosmia as a key symptom of COVID-19 early in the pandemic, prior to this symptom being more widely recognised as a feature of COVID-19

    Tumor necrosis Factor (TNF) Bioactivity at the site of an acute cell-Mediated immune response is Preserved in rheumatoid arthritis Patients responding to anti-TNF Therapy

    Get PDF
    The impact of anti-tumor necrosis factor (TNF) therapies on inducible TNF-dependent activity in humans has never been evaluated in vivo. We aimed to test the hypothesis that patients responding to anti-TNF treatments exhibit attenuated TNF-dependent immune responses at the site of an immune challenge. We developed and validated four context-specific TNF-inducible transcriptional signatures to quantify TNF bioactivity in transcriptomic data. In anti-TNF treated rheumatoid arthritis (RA) patients, we measured the expression of these biosignatures in blood, and in skin biopsies from the site of tuberculin skin tests (TSTs) as a human experimental model of multivariate cell-mediated immune responses. In blood, anti-TNF therapies attenuated TNF bioactivity following ex vivo stimulation. However, at the site of the TST, TNF-inducible gene expression and genome-wide transcriptional changes associated with cell-mediated immune responses were comparable to that of RA patients receiving methotrexate only. These data demonstrate that anti-TNF agents in RA patients do not inhibit inducible TNF activity at the site of an acute inflammatory challenge in vivo, as modeled by the TST. We hypothesize instead that their therapeutic effects are limited to regulating TNF activity in chronic inflammation or by alternative non-canonical pathways

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Transcriptional response modules characterise IL-1β and IL-6 activity in COVID-19

    No full text
    Dysregulated IL-1β and IL-6 responses have been implicated in the pathogenesis of severe Coronavirus Disease 2019 (COVID-19). Innovative approaches for evaluating the biological activity of these cytokines in vivo are urgently needed to complement clinical trials of therapeutic targeting of IL-1β and IL-6 in COVID-19. We show that the expression of IL-1β or IL-6 inducible transcriptional signatures (modules) reflects the bioactivity of these cytokines in immunopathology modelled by juvenile idiopathic arthritis (JIA) and rheumatoid arthritis. In COVID-19, elevated expression of IL-1β and IL-6 response modules, but not the cytokine transcripts themselves, is a feature of infection in the nasopharynx and blood, but is not associated with severity of COVID-19 disease, length of stay or mortality. We propose that IL-1β and IL-6 transcriptional response modules provide a dynamic readout of functional cytokine activity in vivo, aiding quantification of the biological effects of immunomodulatory therapies in COVID-19
    corecore