113 research outputs found

    New human milk fortifiers for the preterm infant

    Get PDF
    Given its unique nutritional and functional advantages, human milk (HM) should be considered as the first choice for the nutrition of all infants, including preterm newborns. Since its protein, mineral and energy contents are not suitable to meet the high needs of very-low-birth-weight (VLBW) infants, HM should be fortified for these components. Fortification of HM is an important nutritional intervention in order to provide appropriate nutritional intake and appropriate growth. The standard fortification strategy has yielded inadequate protein intakes, resulting in slower growth as compared to preterm formulas. Improvement of outcomes depends on new fortification strategies, considering the large variability of HM composition. Individualized fortification, either targeted or adjustable, has been shown to be effective and practical in attaining adequate protein intakes and growth.<br />Most commercially available multi-nutrient fortifiers and protein concentrates are derived from bovine milk (BM), which has a protein composition very different from that of HM. The use of BM proteins has been recently questioned for possible association with intestinal inflammation in VLBW infants. Recently, one HM-based fortifier was shown to be associated with lower necrotizing enterocolitis rates and lower mortality in extremely premature infants, compared to BM-based products. Other milk sources are currently under evaluation: a randomized, controlled, single-blind clinical trial, coordinated by the Neonatal Unit of the University of Turin in collaboration with the Italian National Research Council of Turin and the University of Cagliari, is being carried out to evaluate the adequacy of fortifiers derived from donkey milk for the nutrition of preterm infants

    Protein synthesis inhibition and loss of homeostatic functions in astrocytes from an Alzheimer's disease mouse model: a role for ER-mitochondria interaction

    Get PDF
    Deregulation of protein synthesis and ER stress/unfolded protein response (ER stress/UPR) have been reported in astrocytes. However, the relationships between protein synthesis deregulation and ER stress/UPR, as well as their role in the altered homeostatic support of Alzheimer's disease (AD) astrocytes remain poorly understood. Previously, we reported that in astrocytic cell lines from 3xTg-AD mice (3Tg-iAstro) protein synthesis was impaired and ER-mitochondria distance was reduced. Here we show that impaired protein synthesis in 3Tg-iAstro is associated with an increase of p-eIF2α and downregulation of GADD34. Although mRNA levels of ER stress/UPR markers were increased two-three-fold, we found neither activation of PERK nor downstream induction of ATF4 protein. Strikingly, the overexpression of a synthetic ER-mitochondrial linker (EML) resulted in a reduced protein synthesis and augmented p-eIF2α without any effect on ER stress/UPR marker genes. In vivo, in hippocampi of 3xTg-AD mice, reduced protein synthesis, increased p-eIF2α and downregulated GADD34 protein were found, while no increase of p-PERK or ATF4 proteins was observed, suggesting that in AD astrocytes, both in vitro and in vivo, phosphorylation of eIF2α and impairment of protein synthesis are PERK-independent. Next, we investigated the ability of 3xTg-AD astrocytes to support metabolism and function of other cells of the central nervous system. Astrocyte-conditioned medium (ACM) from 3Tg-iAstro cells significantly reduced protein synthesis rate in primary hippocampal neurons. When added as a part of pericyte/endothelial cell (EC)/astrocyte 3D co-culture, 3Tg-iAstro, but not WT-iAstro, severely impaired formation and ramification of tubules, the effect, replicated by EML overexpression in WT-iAstro cells. Finally, a chemical chaperone 4-phenylbutyric acid (4-PBA) rescued protein synthesis, p-eIF2α levels in 3Tg-iAstro cells and tubulogenesis in pericyte/EC/3Tg-iAstro co-culture. Collectively, our results suggest that a PERK-independent, p-eIF2α-associated impairment of protein synthesis compromises astrocytic homeostatic functions, and this may be caused by the altered ER-mitochondria interaction

    Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells

    Get PDF
    Innate lymphoid cells (ILCs) patrol environmental interfaces to defend against infection and protect barrier integrity. Using a genetic tuning model, we demonstrate that the signal-dependent transcription factor (TF) STAT5 is critical for accumulation of all known ILC subsets in mice and reveal a hierarchy of STAT5 dependency for populating lymphoid and nonlymphoid tissues. We apply transcriptome and genomic distribution analyses to define a STAT5 gene signature in natural killer (NK) cells, the prototypical ILC subset, and provide a systems-based molecular rationale for its key functions downstream of IL-15. We also uncover surprising features of STAT5 behavior, most notably the wholesale redistribution that occurs when NK cells shift from tonic signaling to acute cytokine-driven signaling, and genome-wide coordination with T-bet, another key TF in ILC biology. Collectively, our data position STAT5 as a central node in the TF network that instructs ILC development, homeostasis, and function and provide mechanistic insights on how it works at cellular and molecular levels

    Evaluation of Legionella Air Contamination in Healthcare Facilities by Different Sampling Methods: An Italian Multicenter Study

    Get PDF
    Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis®μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis®μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis®μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis®μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigation

    Diagnosis, treatment and prevention of pediatric obesity: consensus position statement of the Italian Society for Pediatric Endocrinology and Diabetology and the Italian Society of Pediatrics

    Get PDF
    The Italian Consensus Position Statement on Diagnosis, Treatment and Prevention of Obesity in Children and Adolescents integrates and updates the previous guidelines to deliver an evidence based approach to the disease. The following areas were reviewed: (1) obesity definition and causes of secondary obesity; (2) physical and psychosocial comorbidities; (3) treatment and care settings; (4) prevention.The main novelties deriving from the Italian experience lie in the definition, screening of the cardiometabolic and hepatic risk factors and the endorsement of a staged approach to treatment. The evidence based efficacy of behavioral intervention versus pharmacological or surgical treatments is reported. Lastly, the prevention by promoting healthful diet, physical activity, sleep pattern, and environment is strongly recommended since the intrauterine phase

    Disease-specific and general health-related quality of life in newly diagnosed prostate cancer patients: The Pros-IT CNR study

    Get PDF

    Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study

    Get PDF
    : The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity &gt; 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Roadmap on printable electronic materials for next-generation sensors

    Get PDF
    The dissemination of sensors is key to realizing a sustainable, ‘intelligent’ world, where everyday objects and environments are equipped with sensing capabilities to advance the sustainability and quality of our lives—e.g., via smart homes, smart cities, smart healthcare, smart logistics, Industry 4.0, and precision agriculture. The realization of the full potential of these applications critically depends on the availability of easy-to-make, low-cost sensor technologies. Sensors based on printable electronic materials offer the ideal platform: they can be fabricated through simple methods (e.g., printing and coating) and are compatible with high-throughput roll-to-roll processing. Moreover, printable electronic materials often allow the fabrication of sensors on flexible/stretchable/biodegradable substrates, thereby enabling the deployment of sensors in unconventional settings. Fulfilling the promise of printable electronic materials for sensing will require materials and device innovations to enhance their ability to transduce external stimuli—light, ionizing radiation, pressure, strain, force, temperature, gas, vapours, humidity, and other chemical and biological analytes. This Roadmap brings together the viewpoints of experts in various printable sensing materials—and devices thereof—to provide insights into the status and outlook of the field. Alongside recent materials and device innovations, the roadmap discusses the key outstanding challenges pertaining to each printable sensing technology. Finally, the Roadmap points to promising directions to overcome these challenges and thus enable ubiquitous sensing for a sustainable, ‘intelligent’ world

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution
    corecore