1,406 research outputs found
Determination of spin and orbital magnetization in the ferromagnetic superconductor UCoGe
International audienceThe magnetism in the ferromagnetic superconductor UCoGe has been studied using a combination of magnetic Compton scattering, bulk magnetization, X-ray magnetic circular dichroism and electronic structure calculations, in order to determine the spin and orbital moments. The experimentally observed total spin moment, Ms, was found to be-0.24 ± 0.05 µB at 5 T. By comparison with the total moment of 0.16 ± 0.01 µB, the orbital moment, M l , was determined to be 0.40 ± 0.05 µB. The U and Co spin moments were determined to be antiparallel. We find that the U 5f electrons carry a spin moment of Us ≈-0.30 µB and that there is a Co spin moment of Cos ≈ 0.06 µB induced via hybridization. The ratio U l /Us, of −1.3 ± 0.3, shows the U moment to be itinerant. In order to ensure an accurate description of the properties of 5f systems, and to provide a critical test of the theoretical approaches, it is clearly necessary to obtain experimental data for both the spin and orbital moments, rather than just the total magnetic moment. This can be achieved simply by measuring the spin moment with magnetic Compton scattering and comparing this to the total moment from bulk magnetizatio
Dynamically avoiding fine-tuning the cosmological constant: the "Relaxed Universe"
We demonstrate that there exists a large class of action functionals of the
scalar curvature and of the Gauss-Bonnet invariant which are able to relax
dynamically a large cosmological constant (CC), whatever it be its starting
value in the early universe. Hence, it is possible to understand, without
fine-tuning, the very small current value of the CC as compared to its
theoretically expected large value in quantum field theory and string theory.
In our framework, this relaxation appears as a pure gravitational effect, where
no ad hoc scalar fields are needed. The action involves a positive power of a
characteristic mass parameter, M, whose value can be, interestingly enough, of
the order of a typical particle physics mass of the Standard Model of the
strong and electroweak interactions or extensions thereof, including the
neutrino mass. The model universe emerging from this scenario (the "Relaxed
Universe") falls within the class of the so-called LXCDM models of the cosmic
evolution. Therefore, there is a "cosmon" entity X (represented by an effective
object, not a field), which in this case is generated by the effective
functional and is responsible for the dynamical adjustment of the cosmological
constant. This model universe successfully mimics the essential past epochs of
the standard (or "concordance") cosmological model (LCDM). Furthermore, it
provides interesting clues to the coincidence problem and it may even connect
naturally with primordial inflation.Comment: LaTeX, 63 pp, 8 figures. Extended discussion. Version accepted in
JCA
B-->pi and B-->K transitions in standard and quenched chiral perturbation theory
We study the effects of chiral logs on the heavy-->light pseudoscalar meson
transition form factors by using standard and quenched chiral perturbation
theory combined with the static heavy quark limit. The resulting expressions
are used to indicate the size of uncertainties due to the use of the quenched
approximation in the current lattice studies. They may also be used to assess
the size of systematic uncertainties induced by missing chiral log terms in
extrapolating toward the physical pion mass. We also provide the coefficient
multiplying the quenched chiral log, which may be useful if the quenched
lattice studies are performed with very light mesons.Comment: 33 pages, 8 PostScript figures, version to appear in PR
CDMS, Supersymmetry and Extra Dimensions
The CDMS experiment aims to directly detect massive, cold dark matter
particles originating from the Milky Way halo. Charge and lattice excitations
are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK,
allowing to separate nuclear recoils from the dominating electromagnetic
background. The operation of 12 detectors in the Soudan mine for 75 live days
in 2004 delivered no evidence for a signal, yielding stringent limits on dark
matter candidates from supersymmetry and universal extra dimensions. Thirty Ge
and Si detectors are presently installed in the Soudan cryostat, and operating
at base temperature. The run scheduled to start in 2006 is expected to yield a
one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on
sources and detection of dark matter and dark energy in the universe, Marina
del Rey, Feb 22-24, 200
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Pion and sigma meson properties in a relativistic quark model
A variety of strong and electroweak interaction properties of the pion and
the light scalar sigma meson are computed in a relativistic quark model. Under
the assumption that the resulting coupling of these mesons to the constituent
quarks is identical, the sigma meson mass is determined as M_sigma=385.4 MeV.
We discuss in detail the gauging of the non-local meson-quark interaction and
calculate the electromagnetic form factor of the pion and the form factors of
the pi(0) -> gamma gamma and sigma -> gamma gamma processes. We obtain explicit
expressions for the relevant form factors and evaluate the leading and
next-to-leading orders for large Euclidean photon virtualities. Turning to the
decay properties of the sigma we determine the width of the electromagnetic
sigma -> gamma gamma transition and discuss the strong decay sigma -> pi pi. In
a final step we compute the nonleptonic decays D -> sigma pi and B -> sigma pi
relevant for the possible observation of the sigma meson. All our results are
compared to available experimental data and to results of other theoretical
studies.Comment: 46 page
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Strangeness nuclear physics: a critical review on selected topics
Selected topics in strangeness nuclear physics are critically reviewed. This
includes production, structure and weak decay of --Hypernuclei, the
nuclear interaction and the possible existence of bound
states in nuclei. Perspectives for future studies on these issues are also
outlined.Comment: 63 pages, 51 figures, accepted for publication on European Physical
Journal
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
- …
