27 research outputs found

    MEG in the macaque monkey and human: distinguishing cortical fields in space and time.

    Get PDF
    Magnetoencephalography (MEG) is an increasingly popular non-invasive tool used to record, on a millisecond timescale, the magnetic field changes generated by cortical neural activity. MEG has the advantage, over fMRI for example, that it is a direct measure of neural activity. In the current investigation we used MEG to measure cortical responses to tactile and auditory stimuli in the macaque monkey. We had two aims. First, we sought to determine whether MEG, a technique that may have low spatial accuracy, could be used to distinguish the location and organization of sensory cortical fields in macaque monkeys, a species with a relatively small brain compared to that of the human. Second, we wanted to examine the temporal dynamics of cortical responses in the macaque monkey relative to the human. We recorded MEG data from anesthetized monkeys and, for comparison, from awake humans that were presented with simple tactile and auditory stimuli. Neural source reconstruction of MEG data showed that primary somatosensory and auditory cortex could be differentiated and, further, that separate representations of the digit and lip within somatosensory cortex could be identified in macaque monkeys as well as humans. We compared the latencies of activity from monkey and human data for the three stimulation types and proposed a correspondence between the neural responses of the two species. We thus demonstrate the feasibility of using MEG in the macaque monkey and provide a non-human primate model for examining the relationship between external evoked magnetic fields and their underlying neural sources

    Aquatic geochemistry of the rare earth elements and yttrium in the Pioneer River catchment, Australia

    No full text
    The rare earth elements are strong provenance indicators in geological materials, yet the potential for tracing provinciality in surface freshwater samples has not been adequately tested. Rare earth element and yttrium concentrations were measured at 33 locations in the Pioneer River catchment, Mackay, central Queensland, Australia. The rare earth element patterns were compared on the basis of geological, topographical and land-use features in order to investigate the provenancing potential of these elements in a small freshwater system. The rare earth element patterns of streams draining single lithological units with minor land modification show strongly coherent normalised behaviour, with a loss of coherence in agricultural locations. Evidence is reported for an anthropogenic Gd anomaly that may provide a useful hydrological tracer in this region since the introduction of magnetic resonance imaging in 2003. Several samples display a superchondritic Y/Ho mass ratio (up to 44), which is not explainable within the constraints imposed by local geology. Instead, it is suggested that the additional Y is derived from a marine source, specifically marine phosphorites, which are a typical source of fertiliser phosphorus. The data indicate that, under some circumstances, scaled and normalised freshwater rare earth patterns behave conservatively

    Chemostratigraphy of the Sudbury impact basin fill: Volatile metal loss and post-impact evolution of a submarine impact basin

    No full text
    The 1.85 Ga Sudbury structure provides a unique opportunity to study the sequence of events that occurred within a hydrothermally active subaqueous impact crater during the late stages of an impact and in its aftermath. Here we provide the first comprehensive chemostratigraphic study for the lower crater fill, represented by the ca. 1.4 km thick Onaping Formation. Carefully hand-picked ash-sized matrix of 81 samples was analysed for major elements, full trace elements and C isotopes. In most general terms, the composition of the clast-free matrix resembles that of the underlying melt sheet. However, many elements show interesting chemostratigraphies. The high field strength element evolution clearly indicates that the crater rim remained intact during the deposition of the entire Onaping Formation, collapsing only at the transition to the overlying Onwatin Formation. An interesting feature is that several volatile metals (e.g., Pb, Sb) are depleted by >90% in the lower Onaping Formation, suggesting that the impact resulted in a net loss of at least some volatile species, supporting the idea of "impact erosion," whereby volatile elements were vaporised and lost to space during impact. Reduced C contents in the lower Onaping Formation are low (<0.1 wt%) but increase to 0.5-1 wt% up stratigraphy, where delta C-13 becomes constant at -31%, indicating a biogenic origin. Elevated Y/Ho and U/Th require that the ash interacted with saline water, most likely seawater. Redox-sensitive trace metal chemostratigraphies (e.g., V and Mo) suggest that the basin was anoxic and possibly euxinic and became inhabited by plankton, whose rain-down led to a reservoir effect in certain elements (e.g., Mo). This lasted until the crater rim was breached, the influx of fresh seawater promoting renewed productivity. If the Sudbury basin is used as an analogue for the Hadean and Eoarchaean Earth, our findings suggest that hydrothermal systems, capable of producing volcanogenic massive sulphides, could develop within the rims of large to giant impact structures. These hydrothermal systems did not require mid-ocean ridges and implicitly, the operation of plate tectonics. Regardless of hydrothermal input, enclosed submarine impact basins also provided diverse isolated environments (potential future oases) for the establishment of life. (C) 2016 Elsevier Ltd. All rights reserved
    corecore