13 research outputs found

    Caracterización de polvos de residuo de caqui deshidratado para su uso como ingrediente funcional en alimentos

    Full text link
    [ES] La industrialización de frutas y hortalizas genera una gran cantidad de residuos orgánicos que tienen un impacto negativo sobre el medio ambiente y que deben gestionarse adecuadamente. A pesar de ser una fuente importante de compuestos bioactivos, estos desechos están infravalorados o no se utilizan, por lo que es necesario desarrollar nuevos procesos y productos que den valor a estos residuos, contribuyendo así a la sostenibilidad de la industria alimentaria y al concepto de economía circular. La fabricación de polvos de frutas es una tendencia actual en la industria alimentaria. Se trata de productos versátiles y concentrados en sus propiedades, que pueden utilizarse directamente o como ingrediente en la fabricación de alimentos. La obtención de polvos a partir de los residuos de industrialización de frutas se presenta, por lo tanto, como una oportunidad interesante, surgiendo así el objetivo del presente trabajo: obtener un ingrediente en polvo sostenible y funcional a partir de bagazo de caqui como solución a la sobreproducción que está experimentando este cultivo y a su creciente industrialización. A tal fin, se estudió el efecto de las operaciones de secado por aire caliente (60 y 70 °C durante 10 o 20 horas) y liofilización, combinadas con una (pre-) o dos (pre- y post- secado) moliendas, sobre las propiedades fisicoquímicas y funcionales del polvo de bagazo de caqui (6 tipos de polvo en total). Asimismo, se planteó el desarrollo de un polvo probiótico a partir de bagazo de caqui triturado e inoculado con Lactobacillus salivarius spp. salivarius, sometido posteriormente a secado por aire caliente o liofilización, y molienda. Los resultados obtenidos pusieron de manifiesto que la combinación de moliendas y secado, junto con las características de los distintos métodos de deshidratación empleados, determinan las propiedades del polvo. Se demostró la interdependencia de las operaciones de secado y molienda, y se constató que la extracción de los compuestos solubles y antioxidantes se ve favorecida por la desestructuración previa al secado y el tamaño de partícula final del polvo. Además de influir en las propiedades antioxidantes, el tamaño de partícula también se relacionó con el resto de propiedades analizadas. La operación de liofilización combinada con dos moliendas permitió obtener un polvo de adecuada estabilidad y con unas propiedades fisicoquímicas y antioxidantes excelentes para ser utilizado como ingrediente funcional. No obstante, debido al coste de esta operación, el polvo secado por aire caliente a 60 °C durante 20 horas se presenta como una alternativa adecuada para producción a gran escala. En relación a la obtención de polvos de bagazo de caqui enriquecidos con Lactobacillus salivarius spp. salivarius (CECT 4063) se constató que las propiedades del bagazo triturado eran adecuadas para el crecimiento de la bacteria. El polvo liofilizado es el único que podría considerarse probiótico teniendo en cuenta la viabilidad del microorganismo en el producto final; no obstante, se propone profundizar en las operaciones de secado por aire caliente para diseñar un proceso de secado que mejore la supervivencia celular y reduzca los costes asociados a la liofilización. En términos generales, se concluye que los polvos obtenidos a partir de bagazo de caqui son una alternativa interesante para la reincorporación de estos desechos orgánicos a la cadena alimentaria, constituyendo un ingrediente sostenible y funcional con múltiples aplicaciones en la formulación de alimentos, y que podrían ser incluidos en matrices alimentarias de distinta naturaleza.[EN] Fruits and vegetables industrialization generates a large amount of organic waste that has a negative impact on the environment and must be managed properly. Despite being an important source of bioactive compounds, these wastes are undervalued or not used, so it is necessary to develop new processes and products that give value to them, in order to contribute to the sustainability of the food industry and the concept of circular economy. The fruits powders manufacture is a current trend in the food industry. It treats of versatile products and concentrated in their properties, that can be used directly or as an ingredient in foods manufacture. Therefore, obtaining powders from fruit industrialization residues is an interesting opportunity, emerging the objective of this work: to obtain a sustainable and functional powder ingredient from persimmon bagasse as a solution to the overproduction and growing industrialization of this crop. For this purpose, the effect of hot air drying (60 and 70 °C for 10 or 20 hours) and freeze-drying operations, combined with one (pre-) or two (pre- and post-drying) grinds was studied, about the physicochemical and functional properties of persimmon peel powder (6 types of powder in total). In addition, the development of a probiotic powder from crushed persimmon bagasse and inoculated with Lactobacillus salivarius spp. Salivarius was considered. This powders were subdued to hot air drying or freeze-drying, and grinding. The obtained results showed that the combination of grinding and drying, in conjunction with the characteristics of the different dehydration methods used, determine powder properties. The interdependence of drying and grinding operations was demonstrated, and it was found that the soluble compounds and antioxidants extraction is favoured by drying previous disorganisation and the final particle size of the powder. A part from that, the particle size was related to the rest of the properties analysed, too. The operation of freeze-drying combined with two grindings, allowed to obtain a powder with adequate stability and excellent physicochemical and antioxidant properties to be used as a functional ingredient. However, due to the cost of this operation, the powder dried by hot air at 60 °C for 20 hours is presented as a suitable alternative for large-scale production. In relation to obtaining persimmon peel powder enriched with Lactobacillus salivarius spp. salivarius (CECT 4063) it was found that the properties of the crushed bagasse were suitable for bacterial growth. Freezedried powder is the only one that could be considered as probiotic, taking into account the viability of the microorganism in the final product. In spite of, it is proposed to go into detail about hot air drying operations in order to design a drying process that improves cell survival and reduces the costs associated with freeze-drying. To conclude, powders obtained from persimmon peel are an interesting alternative for the reincorporation of these organic wastes into food chain, because they are sustainable and functional ingredients with multiple applications in food formulation, and which could be included in different types of food matrices.Bas Bellver, CI. (2018). Caracterización de polvos de residuo de caqui deshidratado para su uso como ingrediente funcional en alimentos. http://hdl.handle.net/10251/123909TFG

    Impact of Disruption and Drying Conditions on Physicochemical, Functional and Antioxidant Properties of Powdered Ingredients Obtained from Brassica Vegetable By-Products

    Full text link
    [EN] Reintroducing waste products into the food chain, thus contributing to circular economy, is a key goal towards sustainable food systems. Fruit and vegetable processing generates large amounts of residual organic matter, rich in bioactive compounds. In Brassicaceae, glucosinolates are present as secondary metabolites involved in the biotic stress response. They are hydrolysed by the enzyme myrosinase when plant tissue is damaged, releasing new products (isothiocyanates) of great interest to human health. In this work, the process for obtaining powdered products from broccoli and white cabbage by-products, to be used as food ingredients, was developed. Residues produced during primary processing of these vegetables were transformed into powders by a process consisting of disruption (chopping or grinding), drying (hot-air drying at 50, 60 or 70 degrees C, or freeze drying) and final milling. The impact of processing on powders' physicochemical and functional properties was assessed in terms of their physicochemical, technological and antioxidant properties. The matrix response to drying conditions (drying kinetics), as well as the isothiocyanate (sulforaphane) content of the powders obtained were also evaluated. The different combinations applied produced powdered products, the properties of which were determined by the techniques and conditions used. Freeze drying better preserved the characteristics of the raw materials; nevertheless, antioxidant characteristics were favoured by air drying at higher temperatures and by applying a lower intensity of disruption prior to drying. Sulforaphane was identified in all samples, although processing implied a reduction in this bioactive compound. The results of the present work suggest Brassica residues may be transformed into powdered ingredients that might be used to provide additional nutritional value while contributing to sustainable development.This research was funded by the regional government of Valencia (Generalitat Valenciana) under the Rural Development Program 2014-2020 (Ayudas para la cooperacion en el marco del Programa de desarrollo rural de la Comunitat Valenciana 2014-2020. Experiencias innovadoras y sostenibles entre productores y centros de investigacion con cultivos adaptados al cambio climatico y producidos con modelos agroecologicos) and the Spanish Ministry of Agriculture, fisheries and food, under the European Agricultural Fund for Rural Development. Grant number: AGCOOP_A/2021/020.Bas-Bellver, C.; Barrera Puigdollers, C.; Betoret Valls, N.; Seguí Gil, L. (2022). Impact of Disruption and Drying Conditions on Physicochemical, Functional and Antioxidant Properties of Powdered Ingredients Obtained from Brassica Vegetable By-Products. Foods. 11(22):1-19. https://doi.org/10.3390/foods11223663119112

    Turning Agri-Food Cooperative Vegetable Residues into Functional Powdered Ingredients for the Food Industry

    Full text link
    [EN] Current food transformation processes must face the food waste issue by developing valorization processes to reintroduce by-products in the economic cycle and contribute to circular economy, generating social and economic value, and ensuring permanence of agricultural and rural activities. In the present paper, the results of a collaboration project between a regional agri-food cooperative and university are summarized. The project aimed to revalorize a series of vegetable wastes (carrot, leek, celery, and cabbage) from the fresh and ready-to-eat lines of the cooperative, by producing functional powders to be used as functional food ingredients. Vegetables residues were successfully transformed into functional ingredients by hot air drying or freeze-drying, and variables such as storage conditions and grinding intensity prior to drying were considered. Twenty-five vegetable powders were obtained and characterized in terms of physicochemical and antioxidant properties. Results showed that drying (mainly hot air drying) allowed obtaining stable powders, with very low water activity values, and a significantly increased functionality. Vegetable waste powders could be used in the food industry as coloring and flavoring ingredients, or natural preservatives, or either be used to reformulate processed foods in order to improve their nutritional properties.This research was funded by the regional government of Valencia (Generalitat Valenciana) under the Rural Development Program 2014¿2020 (Ayudas para la cooperación en el marco del Programa de desarrollo rural de la Comunitat Valenciana 2014¿2020. Experiencias de transformación agroalimentaria innovadoras, especialmente vinculadas a figuras de calidad diferenciada y producción ecológica) and the Spanish Ministry of Agriculture, fisheries and food, under the European Agricultural Fund for Rural Development. Grant number AGCOOP_D/2018/025Bas-Bellver, C.; Barrera Puigdollers, C.; Betoret Valls, N.; Seguí Gil, L. (2020). Turning Agri-Food Cooperative Vegetable Residues into Functional Powdered Ingredients for the Food Industry. Sustainability. 12(4):1-15. https://doi.org/10.3390/su12041284S11512

    Exploring fermentation with lactic acid bacteria as a pretreatment for enhancing antioxidant potential in broccoli stem powders

    Get PDF
    Fruit and vegetable industries face a major environmental challenge with food loss and waste. Broccoli stems, comprising 38% of the plant's total weight, are usually discarded by the industry producing fourth-range and ready-to-use products, despite being rich in antioxidants, vitamins, fiber, carotenoids, phenolic compounds, and glucosinolates. Addressing the challenge of reducing waste in this sector includes the production of stable and nutrient-concentrated powders, which can be consumed directly or used as ingredients in functional food formulation. This study investigated fermentation with lactic acid bacteria (Limosilactobacillus reuteri, Lactiplantibacillus plantarum, and Lactobacillus salivarius) as a pretreatment for enhancing antioxidant and probiotic potential in broccoli stem powders. Results showed maximum counts 24 h after inoculation, and no effect of the previous disruption intensity on microbial growth was observed. Fermenting broccoli stems for 24 h with the three microbial strains led to a significant increase in total phenols and flavonoids but to a general reduction in the samples' capacity to scavenge DPPH and ABTS free radicals. Overall, ground broccoli stems exhibited the most favorable antioxidant properties following the 24 h fermentation step. The subsequent freeze-drying and final grinding had minimal impact on the microbial population but significantly enhanced the extractability of the antioxidant compounds. This study offers a valuable reference for researchers and stakeholders exploring the development of new products and innovations from vegetable waste

    Valorisation of Persimmon and Blueberry By-Products to Obtain Functional Powders: in vitro Digestion and Fermentation by Gut Microbiota

    Full text link
    This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.jafc.0c02088[EN] Globalization of fruit and vegetable markets generates overproduction, surpluses, and potentially valuable residues. The valorization of these byproducts constitutes a challenge, to ensure sustainability and reintroduce them into the food chain. This work focuses on blueberry and persimmon residues, rich in polyphenols and carotenoids, to obtain powders with high added value to be used as ingredients in food formulation. These powders have been characterized, and the changes in the bioactive compounds in in vitro gastrointestinal digestion have been evaluated. The results indicated that the type of residue, the drying process, as well as the content and type of fiber determine the release of antioxidants during digestion. In vitro colonic fermentations were also performed, and it was observed that the characteristics of digested powders had an effect on the composition of the growing microbial community. Thus, carotenoids and anthocyanins maintain an interplay with microbiota that could be beneficial for human health.This study was supported by the Polisabio grant (P32) from Universitat Politecnica de Valencia and FISABIO and also financially supported by the Generalitat Valenciana (Project AICO/2017/049).Bas-Bellver, C.; Andrés, C.; Seguí Gil, L.; Barrera Puigdollers, C.; Jiménez-Hernández, N.; Artacho, A.; Betoret Valls, N.... (2020). Valorisation of Persimmon and Blueberry By-Products to Obtain Functional Powders: in vitro Digestion and Fermentation by Gut Microbiota. Journal of Agricultural and Food Chemistry. 68(30):8080-8090. https://doi.org/10.1021/acs.jafc.0c02088S808080906830Scheel, C. (2016). Beyond sustainability. Transforming industrial zero-valued residues into increasing economic returns. Journal of Cleaner Production, 131, 376-386. doi:10.1016/j.jclepro.2016.05.018Jiang, H., Zhang, M., & Adhikari, B. (2013). Fruit and vegetable powders. Handbook of Food Powders, 532-552. doi:10.1533/9780857098672.3.532Durazzo, A. (s. f.). CHAPTER 3. Extractable and Non-extractable Polyphenols: an Overview. Non-extractable Polyphenols and Carotenoids, 37-45. doi:10.1039/9781788013208-00037Ortega, N., Macià, A., Romero, M.-P., Reguant, J., & Motilva, M.-J. (2011). Matrix composition effect on the digestibility of carob flour phenols by an in-vitro digestion model. Food Chemistry, 124(1), 65-71. doi:10.1016/j.foodchem.2010.05.105Chen, X., He, X., Zhang, B., Sun, L., Liang, Z., & Huang, Q. (2019). Wheat gluten protein inhibits α-amylase activity more strongly than a soy protein isolate based on kinetic analysis. International Journal of Biological Macromolecules, 129, 433-441. doi:10.1016/j.ijbiomac.2019.01.215(2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207-214. doi:10.1038/nature11234Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2017). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1-24. doi:10.1007/s00394-017-1445-8Fraga, C. G., Croft, K. D., Kennedy, D. O., & Tomás-Barberán, F. A. (2019). The effects of polyphenols and other bioactives on human health. Food & Function, 10(2), 514-528. doi:10.1039/c8fo01997eMarhuenda-Muñoz, M., Laveriano-Santos, E. P., Tresserra-Rimbau, A., Lamuela-Raventós, R. M., Martínez-Huélamo, M., & Vallverdú-Queralt, A. (2019). Microbial Phenolic Metabolites: Which Molecules Actually Have an Effect on Human Health? Nutrients, 11(11), 2725. doi:10.3390/nu11112725Zhou, L., Xie, M., Yang, F., & Liu, J. (2020). Antioxidant activity of high purity blueberry anthocyanins and the effects on human intestinal microbiota. LWT, 117, 108621. doi:10.1016/j.lwt.2019.108621Coronel, J., Pinos, I., & Amengual, J. (2019). β-carotene in Obesity Research: Technical Considerations and Current Status of the Field. Nutrients, 11(4), 842. doi:10.3390/nu11040842Levy, M., Thaiss, C. A., & Elinav, E. (2016). Metabolites: messengers between the microbiota and the immune system. Genes & Development, 30(14), 1589-1597. doi:10.1101/gad.284091.116Guo, B., Yang, B., Pang, X., Chen, T., Chen, F., & Cheng, K.-W. (2019). Fucoxanthin modulates cecal and fecal microbiota differently based on diet. Food & Function, 10(9), 5644-5655. doi:10.1039/c9fo01018aLyu, Y., Wu, L., Wang, F., Shen, X., & Lin, D. (2018). Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis. Experimental Biology and Medicine, 243(7), 613-620. doi:10.1177/1535370218763760Castagnini, J. M., Betoret, N., Betoret, E., & Fito, P. (2015). Vacuum impregnation and air drying temperature effect on individual anthocyanins and antiradical capacity of blueberry juice included into an apple matrix. LWT - Food Science and Technology, 64(2), 1289-1296. doi:10.1016/j.lwt.2015.06.044Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702jMimouni, A., Deeth, H. C., Whittaker, A. K., Gidley, M. J., & Bhandari, B. R. (2009). Rehydration process of milk protein concentrate powder monitored by static light scattering. Food Hydrocolloids, 23(7), 1958-1965. doi:10.1016/j.foodhyd.2009.01.010Seguí, L., Calabuig-Jiménez, L., Betoret, N., & Fito, P. (2015). Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar. International Journal of Food Science & Technology, 50(12), 2579-2588. doi:10.1111/ijfs.12926Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., Verhé, R., & Camp, J. V. (2008). Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry, 108(2), 649-656. doi:10.1016/j.foodchem.2007.11.056Cătunescu, G. M., Rotar, A. M., Pop, C. R., Diaconeasa, Z., Bunghez, F., Socaciu, M.-I., & Semeniuc, C. A. (2019). Influence of extraction pre-treatments on some phytochemicals and biological activity of Transylvanian cranberries (Vaccinium vitis-idea L.). LWT, 102, 385-392. doi:10.1016/j.lwt.2018.12.062Gopalsamy, G., Mortimer, E., Greenfield, P., Bird, A. R., Young, G. P., & Christophersen, C. T. (2019). Resistant Starch Is Actively Fermented by Infant Faecal Microbiota and Increases Microbial Diversity. Nutrients, 11(6), 1345. doi:10.3390/nu11061345Aguirre, M., Jonkers, D. M. A. E., Troost, F. J., Roeselers, G., & Venema, K. (2014). In Vitro Characterization of the Impact of Different Substrates on Metabolite Production, Energy Extraction and Composition of Gut Microbiota from Lean and Obese Subjects. PLoS ONE, 9(11), e113864. doi:10.1371/journal.pone.0113864Olano-Martin, E., Mountzouris, K. C., Gibson, G. R., & Rastall, R. A. (2000). In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. British Journal of Nutrition, 83(3), 247-255. doi:10.1017/s0007114500000325Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. doi:10.1186/gb-2011-12-6-r60Rohart, F., Gautier, B., Singh, A., & Lê Cao, K.-A. (2017). mixOmics: An R package for ‘omics feature selection and multiple data integration. PLOS Computational Biology, 13(11), e1005752. doi:10.1371/journal.pcbi.1005752Vesterlund, S., Salminen, K., & Salminen, S. (2012). Water activity in dry foods containing live probiotic bacteria should be carefully considered: A case study with Lactobacillus rhamnosus GG in flaxseed. International Journal of Food Microbiology, 157(2), 319-321. doi:10.1016/j.ijfoodmicro.2012.05.016Mosquera, L. H., Moraga, G., & Martínez-Navarrete, N. (2012). Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Research International, 47(2), 201-206. doi:10.1016/j.foodres.2011.05.019Lee, C.-W., Oh, H.-J., Han, S.-H., & Lim, S.-B. (2012). Effects of hot air and freeze drying methods on physicochemical properties of citrus ‘hallabong’ powders. Food Science and Biotechnology, 21(6), 1633-1639. doi:10.1007/s10068-012-0217-8Lucas-González, R., Viuda-Martos, M., Pérez-Álvarez, J. Á., & Fernández-López, J. (2017). Evaluation of Particle Size Influence on Proximate Composition, Physicochemical, Techno-Functional and Physio-Functional Properties of Flours Obtained from Persimmon (Diospyros kaki Trumb.) Coproducts. Plant Foods for Human Nutrition, 72(1), 67-73. doi:10.1007/s11130-016-0592-zCorrea-Betanzo, J., Allen-Vercoe, E., McDonald, J., Schroeter, K., Corredig, M., & Paliyath, G. (2014). Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chemistry, 165, 522-531. doi:10.1016/j.foodchem.2014.05.135De Moraes Crizel, T., Hermes, V. S., de Oliveira Rios, A., & Flôres, S. H. (2016). Evaluation of bioactive compounds, chemical and technological properties of fruits byproducts powder. Journal of Food Science and Technology, 53(11), 4067-4075. doi:10.1007/s13197-016-2413-7Martínez-Las Heras, R., Landines, E. F., Heredia, A., Castelló, M. L., & Andrés, A. (2017). Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties. Journal of Food Science and Technology, 54(9), 2902-2912. doi:10.1007/s13197-017-2728-zConesa, C., Laguarda-Miró, N., Fito, P., & Seguí, L. (2019). Evaluation of Persimmon (Diospyros kaki Thunb. cv. Rojo Brillante) Industrial Residue as a Source for Value Added Products. Waste and Biomass Valorization, 11(7), 3749-3760. doi:10.1007/s12649-019-00621-0Martínez-Las Heras, R., Pinazo, A., Heredia, A., & Andrés, A. (2017). Evaluation studies of persimmon plant ( Diospyros kaki ) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chemistry, 214, 478-485. doi:10.1016/j.foodchem.2016.07.104Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. doi:10.1080/16546628.2017.1361779Palafox-Carlos, H., Ayala-Zavala, J. F., & González-Aguilar, G. A. (2011). The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. Journal of Food Science, 76(1), R6-R15. doi:10.1111/j.1750-3841.2010.01957.xChen, G.-L., Chen, S.-G., Zhao, Y.-Y., Luo, C.-X., Li, J., & Gao, Y.-Q. (2014). Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Industrial Crops and Products, 57, 150-157. doi:10.1016/j.indcrop.2014.03.018Stinco, C. M., Fernández-Vázquez, R., Escudero-Gilete, M. L., Heredia, F. J., Meléndez-Martínez, A. J., & Vicario, I. M. (2012). Effect of Orange Juice’s Processing on the Color, Particle Size, and Bioaccessibility of Carotenoids. Journal of Agricultural and Food Chemistry, 60(6), 1447-1455. doi:10.1021/jf2043949Hedrén, E., Diaz, V., & Svanberg, U. (2002). Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method. European Journal of Clinical Nutrition, 56(5), 425-430. doi:10.1038/sj.ejcn.1601329Louis, P., Scott, K. P., Duncan, S. H., & Flint, H. J. (2007). Understanding the effects of diet on bacterial metabolism in the large intestine. Journal of Applied Microbiology, 102(5), 1197-1208. doi:10.1111/j.1365-2672.2007.03322.xFlint, H. J., Scott, K. P., Duncan, S. H., Louis, P., & Forano, E. (2012). Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3(4), 289-306. doi:10.4161/gmic.19897Pérez-Burillo, S., Pastoriza, S., Jiménez-Hernández, N., D’Auria, G., Francino, M. P., & Rufián-Henares, J. A. (2018). Effect of Food Thermal Processing on the Composition of the Gut Microbiota. Journal of Agricultural and Food Chemistry, 66(43), 11500-11509. doi:10.1021/acs.jafc.8b04077Waters, J. L., & Ley, R. E. (2019). The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biology, 17(1). doi:10.1186/s12915-019-0699-4Gopalsamy, G., Mortimer, E., Greenfield, P., Bird, A. R., Young, G. P., & Christophersen, C. T. (2019). Resistant Starch Is Actively Fermented by Infant Faecal Microbiota and Increases Microbial Diversity. Nutrients, 11(6), 1345. doi:10.3390/nu11061345Gu, F., Borewicz, K., Richter, B., der Zaal, P. H., Smidt, H., Buwalda, P. L., & Schols, H. A. (2018). In Vitro Fermentation Behavior of Isomalto/Malto‐Polysaccharides Using Human Fecal Inoculum Indicates Prebiotic Potential. Molecular Nutrition & Food Research, 62(12), 1800232. doi:10.1002/mnfr.201800232Mosele, J., Macià, A., & Motilva, M.-J. (2015). Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review. Molecules, 20(9), 17429-17468. doi:10.3390/molecules200917429Vendrame, S., Guglielmetti, S., Riso, P., Arioli, S., Klimis-Zacas, D., & Porrini, M. (2011). Six-Week Consumption of a Wild Blueberry Powder Drink Increases Bifidobacteria in the Human Gut. Journal of Agricultural and Food Chemistry, 59(24), 12815-12820. doi:10.1021/jf202868

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Estudio de la digestión in vitro de polvos obtenidos a partir de residuos de piel de caqui y bagazo de arándano

    Full text link
    [ES] La industrialización de frutas genera toneladas de residuos, por lo que su revalorización es de gran importancia para garantizar la sostenibilidad y hacer posible su reutilización en la cadena alimentaria. Estos subproductos presentan un elevado contenido en compuestos bioactivos, siendo de especial interés para el desarrollo de ingredientes funcionales. En este sentido, el presente trabajo se centra en el aprovechamiento del bagazo de arándano y la piel y cáliz del caqui para la obtención de polvos, mediante liofilización (LIOF) y secado por aire caliente (SAC). Estos polvos han sido caracterizados mediante el análisis de sus propiedades fisicoquímicas, antioxidantes, incluyendo el contenido en carotenoides de los polvos de caqui, y la respuesta a la digestión gastrointestinal in vitro. Se llevó también a cabo la simulación de la fermentación colónica in vitro, de la cual se presentan los resultados preliminares. Los resultados indicaron que los polvos de arándano (SAC y LIOF) presentaban mejores propiedades antioxidantes que los de caqui. Generalmente, tras el proceso de la digestión, los compuestos antioxidantes se vieron reducidos, incluidos los carotenoides en los polvos de caqui. La bioaccesibilidad de fenoles y capacidad antioxidante, se vio favorecida por una menor presencia de fibra en los residuos. Finalmente, tras la fermentación colónica in vitro y posterior secuenciación, se pudo determinar que las bacterias colónicas eran capaces de metabolizar los polvos objeto de estudio. Aunque no se ha podido realizar para este trabajo, está prevista la identificación de las bacterias y metabolitos presentes antes y después de la fermentación. Los resultados del presente trabajo sugieren que los polvos de bagazo de arándano y piel de caqui podrían incluirse en la formulación de alimentos para mejorar el contenido en compuestos bioactivos.[EN] Fruits industrialization generates tons of waste, so their valorisation is of great importance to ensure sustainability and reintroduce them into the food chain. These by-products have a high content of bioactive compounds, being of special interest for the development of functional ingredients. In this sense, the present work focuses on the use of blueberry bagasse and persimmon skin and calyx to obtain powders, through freeze-drying (F) and hot air drying (H). These powders have been characterized by analyzing their physicochemical properties, antioxidant content, including the carotenoid content of persimmon powders, and response to in vitro gastrointestinal digestion. Simulation of in vitro colonic fermentation was also achieved, and preliminary results are presented. Results showed blueberry powder (F and H) had better antioxidant properties than persimmon. Generally, after digestion process, antioxidant compounds were reduced, included carotenoids of the persimmon powders. Bioaccessibility of phenols and antioxidant capacity was favoured by a lower presence of fiber in the waste. Finally, after in vitro colonic fermentation and subsequent sequencing, it was determined that the colonic bacteria were able to metabolize the powders under study. Although it has not been possible to achieve in this work, the identification of bacteria and metabolites before and after fermentation is planned. The results of the present work suggest that blueberry bagasse and persimmon peel powders could be included in the food formulation to improve bioactive compounds content.Bas Bellver, CI. (2019).Estudio de la digestión in vitro de polvos obtenidos a partir de residuos de piel de caqui y bagazo de arándano http://hdl.handle.net/10251/124829TFG

    Desarrollo del proceso de obtención de polvos funcionales de uso alimentario a partir de residuos de las líneas de confección de hortalizas, caracterización funcional y evaluación de su respuesta a la digestión simulada in vitro

    Full text link
    Tesis por compendio[ES] La industrialización de frutas y hortalizas genera una gran cantidad de residuos orgánicos, que perjudican el medio ambiente, los cuales están infravalorados o no se utilizan. La eliminación de estos residuos mediante incineración o su almacenamiento en vertederos no es una opción sostenible, por lo que la industria debe dirigir sus esfuerzos a reducir su producción, y reintroducirlos en la cadena agroalimentaria. Estos residuos hortofrutícolas son ricos en compuestos bioactivos beneficiosos para la salud humana, por lo que presentan un gran potencial para su valorización. La reintroducción de estos productos de deshecho en la cadena agroalimentaria, como ingredientes en la formulación de alimentos más nutritivos, por ejemplo, permitiría generar un sistema de economía circular, además de contribuir al consumo de dietas saludables y sostenibles, en línea con los Objetivos de Desarrollo Sostenible definidos por la FAO. En los últimos años, la fabricación de frutas y hortalizas deshidratadas en polvo ha suscitado un creciente interés al tratarse de productos estables, versátiles y concentrados. En línea con esta tendencia, el presente proyecto de tesis doctoral plantea la obtención de este tipo de productos en polvo a partir de los residuos de confección de hortalizas, en colaboración con la cooperativa Agrícola Villena Coop.V. Concretamente, el proyecto se centra en la valorización integral de residuos de zanahoria, col, apio, puerro y brócoli, mediante su transformación en ingredientes funcionales en polvo. Los resultados de esta tesis se presentan por compendio de artículos organizados en cuatro capítulos. En el primer capítulo se presentan los resultados de una revisión bibliográfica, la cual permitió esclarecer que las condiciones de proceso y las técnicas utilizadas definen las características y la funcionalidad de los productos en polvo, permitiendo identificar las operaciones unitarias más adecuadas para tal fin. En el segundo capítulo se recogen los trabajos realizados para evaluar el impacto del procesado (pretratamientos, secado y molienda) sobre las propiedades de los productos en polvo obtenidos a partir de residuos de zanahoria, col, apio, puerro y brócoli. Concretamente, se evaluó la influencia del procesado sobre las propiedades fisicoquímicas, tecnológicas y funcionales de los productos en polvo obtenidos, así como los cambios experimentados por éstos durante el almacenamiento de 4 meses en condiciones controladas. Como pretratamientos, se consideraron la congelación, la intensidad de disrupción del material vegetal y la fermentación con Lactobacillus plantarum (en tallos de brócoli); y como técnicas de deshidratación, el secado por aire caliente (50, 60 y 70°C) y la liofilización. Además de definir las propiedades fisicoquímicas y tecnológicas, la bioaccesibilidad de los compuestos bioactivos presentes en el polvo también queda determinada por el proceso y las características de los polvos obtenidos. En este sentido, se realizaron investigaciones dirigidas a evaluar el impacto del procesado sobre determinados compuestos bioactivos específicos (carotenoides y glucosinolatos), y sobre la respuesta de los productos en polvo a la digestión simulada in vitro. Todo ello queda recogido en el tercer capítulo de resultados. En el cuarto capítulo se describe una primera aproximación a la aplicación de los productos en polvo obtenidos como ingrediente alimentario en la formulación de productos de panadería sin gluten. Los resultados obtenidos en la presente tesis doctoral han demostrado el potencial de los residuos generados en la confección de bandejas y productos de IV gama de zanahoria, col, apio, puerro y brócoli para su valorización integral, habiéndose desarrollado un proceso de transformación de los mismos en productos deshidratados en polvo. Se prevé que esta aproximación pueda contribuir de manera efectiva al concepto de dietas saludables y sostenibles, y al desarrollo de un sistema alimentario más sostenible.[CA] La industrialització de fruites i hortalisses genera una gran quantitat de residus orgànics, que perjudiquen el medi ambient, els quals estan infravalorats o no s'utilitzen. L'eliminació d'aquests residus mitjançant incineració o el seu emmagatzematge en abocadors no és una opció sostenible, per la qual cosa la indústria ha de dirigir els seus esforços a reduir la seua producció, i reintroduir-los en la cadena agroalimentària. Aquests residus hortofructícoles són rics en compostos bioactius beneficiosos per a la salut humana, per la qual cosa presenten un gran potencial per a la seua valorització. La reintroducció d'aquests residus en la cadena agroalimentària, com a ingredients en la formulació d'aliments més nutritius, per exemple, permetria generar un sistema d'economia circular, a més de contribuir al consum de dietes saludables i sostenibles, en línia amb els Objectius de Desenvolupament Sostenible definits per la FAO. En els últims anys, la fabricació de fruites i hortalisses deshidratades en pols ha suscitat un creixent interés per tractar-se de productes estables, versàtils i concentrats. En línia amb aquesta tendència, el present projecte de tesi doctoral planteja l'obtenció de productes en pols a partir dels residus de confecció d'hortalisses, en col·laboració amb la cooperativa Agrícola Villena Coop.V. Concretament, el projecte es centra en la valorització integral de residus de carlota, col, api, porro i bròcoli, mitjançant la seua transformació en ingredients funcionals en pols. Els resultats d'aquesta tesi es presenten per compendi d'articles organitzats en quatre capítols. En el primer capítol es presenten els resultats d'una revisió bibliogràfica, la qual va permetre esclarir que les condicions de procés i les tècniques utilitzades defineixen les característiques i la funcionalitat dels productes en pols, permetent identificar les operacions unitàries més adequades per a tal fi. En el segon capítol es recullen els treballs realitzats per a avaluar l'impacte del processament (pretractaments, secat i molta) sobre les propietats dels productes en pols obtinguts a partir de residus de carlota, col, api, porro i bròcoli. Concretament, es va avaluar la influència del processament sobre les propietats fisicoquímiques, tecnològiques i funcionals dels productes en pols obtinguts, així com els canvis experimentats per aquests durant 4 mesos d'emmagatzematge en condicions controlades. Com a pretractaments, es van considerar la congelació, la intensitat de disrupció del material vegetal i la fermentació amb Lactobacillus plantarum (en tiges de bròcoli); i com a tècniques de deshidratació, el secat per aire calent (50, 60 i 70 °C) i la liofilització. A més de definir les propietats fisicoquímiques i tecnològiques, la bioaccesibilitat dels compostos bioactius presents en la pols també queda determinada pel procés i les característiques de les pols obtingudes. En aquest sentit, es van realitzar investigacions dirigides a avaluar l'impacte del processament sobre determinats compostos bioactius específics (carotenoides i glucosinolatos), i sobre la resposta dels productes en pols a la digestió simulada in vitro. Tot això queda recollit en el tercer capítol de resultats. En el quart capítol es descriu una primera aproximació a l'aplicació dels productes en pols obtinguts com a ingredient alimentari en la formulació de productes de panaderia sense gluten. Els resultats obtinguts en la present tesi doctoral han demostrat el potencial dels residus generats en la confecció d'hortalisses i productes de IV gamma de carlota, col, api, porro i bròcoli per a la seua valorització integral, havent-se desenvolupat un procés de transformació dels mateixos en productes deshidratats en pols. Es preveu que aquesta aproximació puga contribuir de manera efectiva al concepte de dietes saludables i sostenibles, i al desenvolupament d'un sistema alimentari més sostenible.[EN] Fruit and vegetables industrialisation generates a large amount of environmentally damaging organic waste, which is either undervalued or not used. Disposal of these residues by incineration or storage in landfills is not a sustainable option, so the industry must focus on reducing its production as well as reintroducing them into the agri-food chain. These fruit and vegetable by-products are generally rich in bioactive compounds, which are responsible of beneficial health effects, presenting a great potential for their valorisation. The reintroduction of these waste products into the agri-food chain, as ingredients in the formulation of more nutritious foods, for example, would generate a circular economy system, as well as contribute to the consumption of healthy and sustainable diets, in line with the Sustainable Development Goals defined by the FAO. In recent years, interest in fruit and vegetable dehydrated powders manufacturing has been increased, as they are stable, versatile and concentrated products. In line with this trend, this doctoral thesis project aims to obtain this type of powdered products from vegetable waste, in collaboration with the cooperative Agrícola Villena Coop.V. Specifically, the project focuses on the integral valorisation of carrot, cabbage, celery, leek and broccoli waste, through its transformation into powdered functional ingredients. The results of this thesis are presented as a compendium of articles organised in four chapters. The first chapter presents the results of a literature review, which clarified that the processing conditions and techniques used define the characteristics and functionality of powdered products, allowing the identification of the most suitable unit operations for this purpose. The second chapter reports on the work carried out to evaluate the impact of processing (pre-treatment, drying and milling) on the properties of powdered products obtained from carrot, cabbage, celery, leek and broccoli waste. Specifically, the influence of processing on the physico-chemical, technological and functional properties of the obtained powdered products was evaluated, as well as the changes experienced by these products during 4 months of storage under controlled conditions. As pre-treatments, freezing, disruption intensity of plant material and fermentation with Lactobacillus plantarum (in broccoli stems) were considered; and as dehydration techniques, hot-air drying (50, 60 and 70°C) and freeze-drying. In addition to defining the physicochemical and technological properties, the bioaccessibility of the bioactive compounds present in the powder is also determined by the process and the characteristics of the powders obtained. In this regard, research was carried out to assess the impact of processing on specific bioactive compounds (carotenoids and glucosinolates), and on the response of the powdered products to simulated in vitro digestion. This is reported in the third chapter of the results. The fourth chapter describes a first approach to the application of the powdered products obtained as a food ingredient in the formulation of gluten-free bakery products. The results obtained in this doctoral thesis have demonstrated the potential of the waste generated in the preparation of trays and pre-prepared convenience food products of carrot, cabbage, celery, leek and broccoli for their integral valorisation, developing a process for transforming them into dehydrated powdered products. This approach is expected to contribute effectively to the concept of healthy and sustainable diets and to the development of a more sustainable food system.Bas Bellver, CI. (2023). Desarrollo del proceso de obtención de polvos funcionales de uso alimentario a partir de residuos de las líneas de confección de hortalizas, caracterización funcional y evaluación de su respuesta a la digestión simulada in vitro [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/195107Compendi

    Effect of Processing and <i>In Vitro</i> Digestion on Bioactive Constituents of Powdered IV Range Carrot (<i>Daucus carota</i>, L.) Wastes

    No full text
    Daucus carota L. is an important food crop utilized worldwide and a rich source of bioactive compounds. Carrot processing generates residues which are discarded or underused, for which using them as a source for obtaining new ingredients or products is an opportunity for the development of healthier and more sustainable diets. In the present study, the impact of different milling and drying procedures and in vitro digestion on the functional properties of carrot waste powders was evaluated. Carrot waste was transformed into powders by disruption (grinding vs. chopping), drying (freeze-drying or air-drying at 60 or 70 °C) and final milling. Powders were characterized in terms of physicochemical properties (water activity, moisture content, total soluble solids and particle size) nutraceuticals (total phenol content, total flavonoid content antioxidant activity by DPPH and ABTS methods, as well as carotenoid content (α-carotene, β-carotene, lutein, lycopene). Antioxidants and carotenoid content during in vitro gastrointestinal digestion were also evaluated; the latter in different matrices (directly, in water, in oil, and in oil-in-water emulsion). Processing allowed to reduce water activity of samples and obtain powders rich in antioxidant compounds and carotenoids. Both disruption and drying had a significant impact on powders’ properties freeze-drying led to finer powders with higher carotenoid content but lower antioxidant values, whereas air-drying implied chopped air-dried powders exhibited higher phenols content and improved antioxidant activity. Simulated in vitro digestion studies revealed that digestion helps release bioactive compounds which are bound to the powder structure. The solubilization of carotenoids in oil was low, but fat co-ingestion notably increased their recovery. According to the results, carrot waste powders containing bioactive compounds could be proposed as functional ingredients to increase the nutritional value of foods, thus contributing to the concepts of more sustainable food systems and sustainable healthy diets
    corecore