223 research outputs found

    Parity nonconserving cold neutron-parahydrogen interactions

    Full text link
    Three pion dominated observables of the parity nonconserving interactions between the cold neutrons and parahydrogen are calculated. The transversely polarized neutron spin rotation, unpolarized neutron longitudinal polarization, and photon-asymmetry of the radiative polarized neutron capture are considered. For the numerical evaluation of the observables, the strong interactions are taken into account by the Reid93 potential and the parity nonconserving interactions by the DDH model along with the two-pion exchange.Comment: 17 pages, 2 figure

    Influence of enhanced melt supply on upper crustal structure at a mid-ocean ridge discontinuity: A three-dimensional seismic tomographic study of 9°N East Pacific Rise

    Get PDF
    We present a three-dimensional upper crustal model of the 9°03′N overlapping spreading center (OSC) on the East Pacific Rise that assists in understanding the relationship between melt sills and upper crustal structure at a ridge discontinuity with enhanced melt supply at crustal levels. Our P wave velocity model obtained from tomographic inversion of ∼70,000 crustal first arrival travel times suggests that the geometry of extrusive emplacement are significantly different beneath the overlapping spreading limbs. Extrusive volcanic rocks above the western melt sill are inferred to be thin (∼250 m). More extensive accumulation of extrusives is inferred to the west than to the east of the western melt sill. The extrusive layer inferred above the eastern melt sill thickens from ∼350 (at the neovolcanic axis) to 550 m (to the west of the melt sill). Volcanic construction is likely to be significant in the formation of ridge crest morphology at the OSC, particularly at the tip of the eastern limb. On the basis of our interpretation of the velocity model, we propose that enhanced magma supply at crustal levels at the OSC may provide an effective mechanism for the migration of ridge discontinuities. This “dynamic magma supply model” may explain the commonly observed nonsteady migration pattern of ridge discontinuities by attributing this to the temporal fluctuations in melt availability to the overlapping spreading limbs

    Moving Atom-Field Interaction: Correction to Casimir-Polder Effect from Coherent Back-action

    Full text link
    The Casimir-Polder force is an attractive force between a polarizable atom and a conducting or dielectric boundary. Its original computation was in terms of the Lamb shift of the atomic ground state in an electromagnetic field (EMF) modified by boundary conditions along the wall and assuming a stationary atom. We calculate the corrections to this force due to a moving atom, demanding maximal preservation of entanglement generated by the moving atom-conducting wall system. We do this by using non-perturbative path integral techniques which allow for coherent back-action and thus can treat non-Markovian processes. We recompute the atom-wall force for a conducting boundary by allowing the bare atom-EMF ground state to evolve (or self-dress) into the interacting ground state. We find a clear distinction between the cases of stationary and adiabatic motions. Our result for the retardation correction for adiabatic motion is up to twice as much as that computed for stationary atoms. We give physical interpretations of both the stationary and adiabatic atom-wall forces in terms of alteration of the virtual photon cloud surrounding the atom by the wall and the Doppler effect.Comment: 16 pages, 2 figures, clarified discussions; to appear in Phys. Rev.

    Phase coexistence and transitions between antiferromagnetic and ferromagnetic states in a synthetic antiferromagnet

    Get PDF
    In synthetic antiferromagnets (SAFs), antiferromagnetic (AFM) order and synthesis using conventional sputtering techniques is combined to produce systems that are advantageous for spintronics applications. Here we present the preparation and study of SAF multilayers possessing both perpendicular magnetic anisotropy and the Dzyaloshinskii-Moriya interaction. The multilayers have an antiferromagnetically aligned ground state but can be forced into a full ferromagnetic (FM) alignment by applying an out-of-plane field ∼100mT. We study the spin textures in these multilayers in their ground state as well as around the transition point between the AFM and FM states at fields ∼40 mT by imaging the spin textures using complementary methods: photoemission electron, magnetic force, and Lorentz transmission electron microscopies. The transformation into a FM state by field proceeds by a nucleation and growth process, where skyrmionic nuclei form and then broaden into regions containing a ferromagnetically aligned labyrinth pattern that eventually occupies the whole film. Remarkably, this process occurs without any significant change in the net magnetic moment of the multilayer. The mix of antiferromagnetically and ferromagnetically aligned regions on the micron scale in the middle of this transition is reminiscent of a first-order phase transition that exhibits phase coexistence. These results are important for guiding the design of spintronic devices whose operation is based on spin textures in perpendicularly magnetized SAFs

    Protocol for the cultural adaptation of pulmonary rehabilitation and subsequent testing in a randomised controlled feasibility trial for adults with chronic obstructive pulmonary disease in Sri Lanka

    Get PDF
    Introduction: International guidelines recommend pulmonary rehabilitation (PR) should be offered to adults living with chronic obstructive pulmonary disease (COPD), but PR availability is limited in Sri Lanka. Culturally appropriate PR needs to be designed and implemented in Sri Lanka. The study aims to adapt PR to the Sri Lankan context and determine the feasibility of conducting a future trial of the adapted PR in Sri Lanka. Methods and analysis: Eligible participants will be identified and will be invited to take part in the randomised controlled feasibility trial, which will be conducted in Central Chest Clinic, Colombo, Sri Lanka. A total of 50 participants will be recruited (anticipated from April 2021) to the trial and randomised (1:1) into one of two groups; control group receiving usual care or the intervention group receiving adapted PR. The trial intervention is a Sri Lankan-specific PR programme, which will consist of 12 sessions of exercise and health education, delivered over 6 weeks. Focus groups with adults living with COPD, caregivers and nurses and in-depth interviews with doctors and physiotherapist will be conducted to inform the Sri Lankan specific PR adaptations. After completion of PR, routine measures in both groups will be assessed by a blinded assessor. The primary outcome measure is feasibility, including assessing eligibility, uptake and completion. Qualitative evaluation of the trial using focus groups with participants and in-depth interviews with PR deliverers will be conducted to further determine feasibility and acceptability of PR, as well as the ability to run a larger future trial. Ethics and dissemination: Ethical approval was obtained from the ethics review committee of Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka and University of Leicester, UK. The results of the trial will be disseminated through patient and public involvement events, local and international conference proceedings, and peer-reviewed journals. Trial registration number ISRCTN1336773

    Muon reconstruction performance of the ATLAS detector in proton–proton collision data at √s = 13 TeV

    Get PDF
    This article documents the performance of the ATLAS muon identification and reconstruction using the LHC dataset recorded at √s = 13 TeV in 2015. Using a large sample of J/ψ→μμ and Z→μμ decays from 3.2 fb−1 of pp collision data, measurements of the reconstruction efficiency, as well as of the momentum scale and resolution, are presented and compared to Monte Carlo simulations. The reconstruction efficiency is measured to be close to 99% over most of the covered phase space (|η| 2.2, the pT resolution for muons from Z→μμ decays is 2.9 % while the precision of the momentum scale for low-pT muons from J/ψ→μμ decays is about 0.2%

    Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at √s=2.76 TeV with ATLAS

    Get PDF
    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb-1 of s=2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity

    Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    Many extensions of the Standard Model posit the existence of heavy particles with long lifetimes. This article presents the results of a search for events containing at least one long-lived particle that decays at a significant distance from its production point into two leptons or into five or more charged particles. This analysis uses a data sample of proton-proton collisions at √s=8  TeV corresponding to an integrated luminosity of 20.3  fb−1 collected in 2012 by the ATLAS detector operating at the Large Hadron Collider. No events are observed in any of the signal regions, and limits are set on model parameters within supersymmetric scenarios involving R-parity violation, split supersymmetry, and gauge mediation. In some of the search channels, the trigger and search strategy are based only on the decay products of individual long-lived particles, irrespective of the rest of the event. In these cases, the provided limits can easily be reinterpreted in different scenarios
    corecore