45 research outputs found

    The Science Performance of JWST as Characterized in Commissioning

    Get PDF
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    A search for tt̄ resonances using lepton-plus-jets events in proton-proton collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb−¹ of proton-proton collision data collected at a centre-of-mass energy of √s=8 TeV. The lepton-plus-jets final state is used, where the top pair decays to W+bW−b̄, with one W boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow Z′ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour Z′ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with Γ/m = 15% decaying to tt̄. These range from 4.8 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV

    Search for single production of vector-like quarks decaying into Wb in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for singly produced vector-like Q quarks, where Q can be either a T quark with charge +2/3 or a Y quark with charge −4/3, is performed in proton–proton collisions recorded with the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 20.3 fb −1 and was produced with a centre-of-mass energy of √s = 8 TeV. This analysis targets Q→Wb decays where the W boson decays leptonically. A veto on massive large-radius jets is used to reject the dominant tt̄ background. The reconstructed Q-candidate mass, ranging from 0.4 to 1.2 TeV, is used in the search to discriminate signal from background processes. No significant deviation from the Standard Model expectation is observed, and limits are set on the Q→Wb cross-section times branching ratio. The results are also interpreted as limits on the QWb coupling and the mixing with the Standard Model sector for a singlet T quark or a Y quark from a doublet. T quarks with masses below 0.95 TeV are excluded at 95 % confidence level, assuming a unit coupling and a BR(T→Wb)=0.5, whereas the expected limit is 1.10 TeV

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold

    Get PDF

    An Individual Differences Investigation of the Relations among Life Event Stress, Working Memory Capacity, and Mind Wandering: A Preregistered Replication-Extension Study

    No full text
    Klein and Boals (2001a, Applied Cognitive Psychology, 15[5], 565-579, Experiments 1 and 2) found that working memory capacity correlated negatively with perceived negative life event stress and speculated the relation may be driven by thoughts produced from these experiences. Here, we sought to replicate the association between working memory capacity and perceived negative life experience and to assess potential mediators of this association such as mind wandering propensity, rumination propensity, and the sum of negatively valenced mind wandering reports. In this preregistered replication and extension study, with data collected from 356 subjects (ns differ among analyses), we found no evidence suggesting that perceived negative life stress is associated with working memory capacity. Additionally, we found evidence consistent with the claim that negatively valenced mind wandering is uniquely detrimental to cognitive task performance, but we highlight a potential confound that may account for this association that should be addressed in future work

    Trisomy 12 chronic lymphocytic leukemia expresses a unique set of activated and targetable pathways

    No full text
    Although trisomy 12 (+12) chronic lymphocytic leukemia (CLL) comprises about 20% of cases, relatively little is known about its pathophysiology. These cases often demonstrate atypical morphological and immunophenotypic features, high proliferative rates, unmutated immunoglobulin heavy chain variable region genes, and a high frequency of NOTCH1 mutation. Patients with +12 CLL have an intermediate prognosis, and show higher incidences of thrombocytopenia, Richter transformation, and other secondary cancers. Despite these important differences, relatively few transcriptional profiling studies have focused on identifying dysregulated pathways that characterize +12 CLL, and most have used a hierarchical cytogenetic classification in which cases with more than one recurrent abnormality are categorized according to the abnormality with the poorest prognosis. In this study, we sought to identify protein-coding genes whose expression contributes to the unique pathophysiology of +12 CLL. To exclude the likely confounding effects of multiple cytogenetic abnormalities on gene expression, our +12 patient cohort had +12 as the sole abnormality. We profiled samples obtained from 147 treatment-naive patients. We compared cases with +12 as the only cytogenetic abnormality to cases with only del(13q), del(11q), or diploid cytogenetics using independent discovery (n=97) and validation (n=50) sets. We demonstrate that CLL cases with +12 as the sole abnormality express a unique set of activated pathways compared to other cytogenetic subtypes. Among these pathways, we identify the NFAT signaling pathway and the immune checkpoint molecule, NT5E (CD73), which may represent new therapeutic targets
    corecore