509 research outputs found

    Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta)

    Get PDF
    In Greenland, free-living red coralline algae contribute to and dominate marine habitats along the coastline. Lithothamnion glaciale dominates coralline algae beds in many regions of the Arctic, but never in Godthåbsfjord, Greenland, where Clathromorphum sp. is dominant. To investigate environmental impacts on coralline algae distribution, calcification and primary productivity were measured in situ during summers of 2015 and 2016, and annual patterns of productivity in L. glaciale were monitored in laboratory-based mesocosm experiments where temperature and salinity were manipulated to mimic high glacial melt. The results of field and cold-room measurements indicate that both L. glaciale and Clathromorphum sp. had low calcification and photosynthetic rates during the Greenland summer (2015 and 2016), with maximum of 1.225 ± 0.17 or 0.002 ± 0.023 μmol CaCO3 · g-1 · h-1 and -0.007 ±0.003 or -0.004 ± 0.001 mg O2 · L-1 · h-1 in each species respectively. Mesocosm experiments indicate L. glaciale is a seasonal responder; photosynthetic and calcification rates increase with annual light cycles. Furthermore, metabolic processes in L. glaciale were negatively influenced by low salinity; positive growth rates only occurred in marine treatments where individuals accumulated an average of 1.85 ± 1.73 mg · d-1 of biomass through summer. These results indicate high freshwater input to the Godthåbsfjord region may drive the low abundance of L. glaciale, and could decrease species distribution as climate change increases freshwater input to the Arctic marine system via enhanced ice sheet runoff and glacier calving.Peer reviewedFinal Accepted Versio

    Where My Girls At?

    Get PDF
    The essays, artistic pieces, and interviews gathered in this anthology explore both the role of art and visual culture as well as artistic practices in contemporary feminist movements. The art historians, literary scholars, artists, activists, and students and scholars of American Studies included in this collection examine contemporary art and artivism and its capacity to inspire change, reformulate feminist ideas, and reimagine feminist aesthetics. With contributions by young scholars, students, activists, and artists, the collection seeks to display a broad range of perspectives. Recurring themes are the ambivalent labeling of art and artistic or activist practices as ‘feminist’ as well as the role of intersectionality in feminism and art. This edited volume brings together the diverse strands of thought and practice that contemporary feminist art and culture embrace and hopes to contribute to ongoing discussions at the intersection of art and feminist politics

    The Red Sea, Coastal Landscapes, and Hominin Dispersals

    Get PDF
    This chapter provides a critical assessment of environment, landscape and resources in the Red Sea region over the past five million years in relation to archaeological evidence of hominin settlement, and of current hypotheses about the role of the region as a pathway or obstacle to population dispersals between Africa and Asia and the possible significance of coastal colonization. The discussion assesses the impact of factors such as topography and the distribution of resources on land and on the seacoast, taking account of geographical variation and changes in geology, sea levels and palaeoclimate. The merits of northern and southern routes of movement at either end of the Red Sea are compared. All the evidence indicates that there has been no land connection at the southern end since the beginning of the Pliocene period, but that short sea crossings would have been possible at lowest sea-level stands with little or no technical aids. More important than the possibilities of crossing the southern channel is the nature of the resources available in the adjacent coastal zones. There were many climatic episodes wetter than today, and during these periods water draining from the Arabian escarpment provided productive conditions for large mammals and human populations in coastal regions and eastwards into the desert. During drier episodes the coastal region would have provided important refugia both in upland areas and on the emerged shelves exposed by lowered sea level, especially in the southern sector and on both sides of the Red Sea. Marine resources may have offered an added advantage in coastal areas, but evidence for their exploitation is very limited, and their role has been over-exaggerated in hypotheses of coastal colonization

    THE CALLOVIAN UNCONFORMITY AND THE OPHIOLITE OBDUCTION ONTO THE PELAGONIAN CARBONATE PLATFORM OF THE INTERNAL HELLENIDES

    Get PDF
    The carbonate-platform-complex and the oceanic formations of the central Pelagonian zone of the Hellenides evolved in response to a sequence of plate tectonic episodes of ocean spreading, plate convergence and ophiolite obduction. The biostratigraphies of the carbonate platform and the oceanic successions, show that the Triassic-Early Jurassic platform was coeval with an ocean where pillow basalts and radiolarian cherts were being deposited. After convergence began during late Early- Jurassic - Middle Jurassic time, the oceanic leading edge of the Pelagonian plate was subducted beneath the leading edge of the oceanic, overriding plate. The platform subsided while a supra-subduction, volcanic-island-arc evolved. Biostratigraphic and geochemical evidence shows that the platform and the oceanic floor, temporarily became subaerially exposed during Callovian time. This “Callovian event” is suggested to have taken place as oceanic lithosphere first made compressional, tectonic contact with the carbonate platform, initiating a basal detachment fault, along which the platform was thrust upwards. The central Pelagonian zone became an extensive land area that was supplied with laterite from an ophiolite highland. A similar emergence of Vardar ophiolite most likely took place in the Guevgueli area. The Callovian emergence shows that the initial ophiolite obduction onto the platform took place about 25 million years before the final emplacement of the ophiolite during Valanginian time

    How do thrombolites form? Multiphase construction of lacustrine microbialites, Purbeck Limestone Group, (Jurassic), Dorset, UK

    Get PDF
    AbstractThis paper examines how non‐marine thrombolites are formed through a complex, multiphase process of microbial framework construction, erosion, cementation, recrystallization and episodes of internal sedimentation. Recognition of such phases of thrombolite construction provides a framework for the interpretation of the fluctuating environmental conditions leading to their formation. Microbialite frameworks are examined in detail from the Purbeck Limestone Group and their affinities and palaeo‐environmental significance assessed. Three types of thrombolite, one stromatolite and a leolite are described and interpreted. The thrombolite frameworks include: a peloidal mesoclotted type, a thrombolite constructed by the filamentous alga Cladophorites and a type with concentrically laminated micritic mesoclots. Physical and chemical erosion led to extensive early cavity formation within the frameworks. Early calcite rim cements with associated spherulites then developed over the microbial frameworks and these were reworked into cavities. Frameworks were also replaced by chalcedonic quartz and calcite spherulites. Internal sediments comprise peloids, intraclasts and brackish‐water molluscs and ostracods, together with their debris. The thrombolites grew in moderate‐energy to high‐energy shallow, lacustrine, microbial mounds whereas stromatolites occurred in deeper‐water settings. A brackish‐water, lacustrine setting is indicated by the preserved macro‐biota, microbes, absence of charophytes and syndepositional evaporites, and negative stable carbon and oxygen isotope ratios. Strontium isotopes suggest that the carbonate‐rich waters were fed from erosion of Mid–Lower Jurassic limestones on the western basin margin with possible mixing with waters from nearby uplifted Upper Jurassic limestones and with Late Jurassic seawater. The research indicates that non‐marine thrombolites have a complex, multiphase origin resulting in a diverse succession of textures and structures relating to microbially induced and influenced construction, dissolution, cementation, recrystallization and mineral replacement which have not been previously recorded and indicate the major differences between marine and non‐marine thrombolites.</jats:p

    Oblique rifting and segmentation of the NE Gulf of Aden passive margin

    No full text
    The Gulf of Aden is a young, obliquely opening, oceanic basin where tectonic structures can easily be followed and correlated from the passive margins to the active mid-oceanic ridge. It is an ideal laboratory for studies of continental lithosphere breakup from rifting to spreading. The northeastern margin of the Gulf of Aden offers the opportunity to study on land the deformation associated with oblique rifting over a wide area encompassing two segments of the passive margin, on either side of the Socotra fracture zone, exhibiting distinct morphologic, stratigraphic, and structural features. The western segment is characterized by an elevated rift shoulder and large grabens filled with thick synrift series, whereas the eastern segment exhibits low elevation and is devoid of major extensional structures and typical synrift deposits. Though the morphostructural features of the margin segments are different, the stress field analysis provides coherent results all along the margin. Four directions of extension have been recognized and are considered to be representative of two tensional stress fields with permutations of the horizontal principal stresses s2 and s3. The two dominant directions of extension, N150 E and N20 E, are perpendicular to the mean trend of the Gulf of Aden (N75 E) and parallel to its opening direction (N20 E-N30 E), respectively. Unlike another study in the western part of the gulf, our data suggest that the N150 E extension stage is older than the N20 E extension stage. These conflicting chronologies, which are nowhere unambiguously established, suggest that the two extensions coexisted during the rifting. On-land data are compared with offshore data and are interpreted with reference to oblique rifting. The passive margin segmentation represents a local accommodation of the extensional deformation in a homogeneous regional stress field, which reveals the asymmetry of the rifting process. The first-order segmentation of the Sheba Ridge is inherited from the prior segmentation of the passive margin

    Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change

    Get PDF
    Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response
    corecore