132 research outputs found

    Polar vs. nonpolar InGaN/GaN quantum heterostructures: Opposite quantum confined electroabsorption and carrier dynamics behavior

    Get PDF
    We present a study of quantum confined electroabsorption and carrier dynamics in polar c-plane and nonpolar a-plane InGaN/GaN quantum heterostructures. We demonstrate red-shifting absorption edge, due to quantum confined Stark effect, in nonpolar InGaN/GaN quantum structures in response to increased electric field, while we show the opposite effect with blue-shifting absorption spectra in polar quantum structures. Moreover, confirmed by time-resolved photoluminescence measurements, we prove that carrier lifetimes increase with increasing electric field for nonpolar structures, whereas the opposite occurs for polar ones

    Centrality Dependence Of The Pseudorapidity Density Distribution For Charged Particles In Pb-pb Collisions At √snn=2.76tev

    Get PDF
    7264/Mai61062

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    Measurement of jet suppression in central Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    The transverse momentum(p(T)) spectrum and nuclear modification factor (R-AA) of reconstructed jets in 0-10% and 10-30% central Pb-Pb collisions at root s(NN) = 2.76 TeV were measured. Jets were reconstructed using the anti-k(T) jet algorithm with a resolution parameter of R = 0.2 from charged and neutral particles, utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal). The jet p(T) spectra are reported in the pseudorapidity interval of \eta(jet)\ 5 GeV/c to suppress jets constructed from the combinatorial background in Pb-Pb collisions. The leading charged particle requirement applied to jet spectra both in pp and Pb-Pb collisions had a negligible effect on the R-AA. The nuclear modification factor R-AA was found to be 0.28 +/- 0.04 in 0-10% and 0.35 +/- 0.04 in 10-30% collisions, independent of p(T), jet within the uncertainties of the measurement. The observed suppression is in fair agreement with expectations from two model calculations with different approaches to jet quenching. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

    Get PDF
    GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde). Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA&apos;s TEMPO and ESA&apos;s Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS)

    Elliptic flow of identified hadrons in Pb-Pb collisions at 1asNN = 2.76 TeV

    Get PDF
    The elliptic flow coefficient (v2) of identified particles in Pb-Pb collisions at 1asNN = 2.76 TeV was measured with the ALICE detector at the Large Hadron Collider (LHC). The results were obtained with the Scalar Product method, a two-particle corre- lation technique, using a pseudo-rapidity gap of | 06\u3b7| > 0.9 between the identified hadron under study and the reference particles. The v2 is reported for \u3c0\ub1, K\ub1, K0S, p+p, \u3c6, \u39b+\u39b, \u39e 12+\u39e+ and \u3a9 12+\u3a9+ in several collision centralities. In the low transverse momentum (pT) region, pT 3 GeV/c

    Centrality dependence of inclusive J/\u3c8 production in p-Pb collisions at 1asNN = 5.02 TeV

    Get PDF
    We present a measurement of inclusive J/\u3c8 production in p-Pb collisions at 1asNN = 5.02TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. The measurement is performed with the ALICE detector down to zero transverse momentum, pT, in the backward ( 124.46 < ycms < 122.96) and forward (2.03 < ycms < 3.53) rapidity intervals in the dimuon decay channel and in the mid-rapidity region ( 121.37 < ycms < 0.43) in the dielectron decay channel. The backward and forward rapidity intervals correspond to the Pb-going and p-going direction, respectively. The pT-differential J/\u3c8 production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average pT and pT2 values. The nuclear modification factor is presented as a function of centrality for the three rapidity intervals, and as a function of pT for several centrality classes at backward and forward rapidity. At mid- and forward rapidity, the J/\u3c8 yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. The degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing pT of the J/\u3c8. At backward rapidity, the nuclear modification factor is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions
    corecore