157 research outputs found

    A class of elementary particle models without any adjustable real parameters

    Get PDF
    Conventional particle theories such as the Standard Model have a number of freely adjustable coupling constants and mass parameters, depending on the symmetry algebra of the local gauge group and the representations chosen for the spinor and scalar fields. There seems to be no physical principle to determine these parameters as long as they stay within certain domains dictated by the renormalization group. Here however, reasons are given to demand that, when gravity is coupled to the system, local conformal invariance should be a spontaneously broken exact symmetry. The argument has to do with the requirement that black holes obey a complementarity principle relating ingoing observers to outside observers, or equivalently, initial states to final states. This condition fixes all parameters, including masses and the cosmological constant. We suspect that only examples can be found where these are all of order one in Planck units, but the values depend on the algebra chosen. This paper combines findings reported in two previous preprints, and puts these in a clearer perspective by shifting the emphasis towards the implications for particle models.Comment: 28 pages (incl. title page), no figure

    Molprint 2D-Based Identification and Synthesis of Novel Chromene Based Small Molecules that Target Pla2: Validation through Chemo-And Bioinformatics Approaches

    Get PDF
    Phospholipase A2 (PLA2) is known to regulate inflammation and hence it is considered as a validated drug-target by medicinal chemists. In this report, we have identified and considered a highly ranked ligand from the ZINC-drug-like compounds database that targets PLA2 via the MOLPRINT-2D based chemoinformatics drug-design approach. The computationally predicted lead molecule was found to contain a core moiety of a chromene ring, which is well known for its varied biological properties. Here, a novel and efficient retro-synthetic protocol for the synthesis of highly substituted chromene libraries was made. A one-pot synthesis of chromene was carried out using different aromatic primary alcohols, malononitrile and 4-hydroxy coumarin in the presence of a mild oxidant mixture called T3P¼–DMSO, followed by a Suzuki coupling reaction to obtain the lead molecules. All of the tested compounds of the chromene series displayed inhibition of the venom PLA2 in the range of 12 to 68 ÎŒM. Among the tested compounds, 2-amino-4-(2â€Č-methyl-[1,1â€Č-biphenyl]-4-yl)-5-oxo-4,5-dihydropyrano[3,2-c]chromene-3-carbonitrile (7b) showed maximum inhibitory efficacy against venom PLA2 with an IC50 value of 12.5 ÎŒM. Furthermore, the designed PLA2 ligands bound to the active site of venom PLA2, whose binding affinity was comparable to nimesulide, indicating that the chromene moiety containing ligands could be novel lead-structures that serve as anti-inflammatory agents

    A Comparison of search templates for gravitational waves from binary inspiral

    Get PDF
    We compare the performances of the templates defined by three different types of approaches: traditional post-Newtonian templates (Taylor-approximants), ``resummed'' post-Newtonian templates assuming the adiabatic approximation and stopping before the plunge (P-approximants), and further ``resummed'' post-Newtonian templates going beyond the adiabatic approximation and incorporating the plunge with its transition from the inspiral (Effective-one-body approximants). The signal to noise ratio is significantly enhanced (mainly because of the inclusion of the plunge signal) by using these new effective-one-body templates relative to the usual post-Newtonian ones for binary masses greater than 30M⊙ 30 M_\odot, the most likely sources for initial laser interferometers. Independently of the question of the plunge signal, the comparison of the various templates confirms the usefulness of using resummation methods. The paper also summarizes the key elements of the construction of various templates and thus can serve as a resource for those involved in writing inspiral search software.Comment: eta-dependent tail terms corrected after related errata by Blanchet (2005

    Wave Propagation in Gravitational Systems: Late Time Behavior

    Get PDF
    It is well-known that the dominant late time behavior of waves propagating on a Schwarzschild spacetime is a power-law tail; tails for other spacetimes have also been studied. This paper presents a systematic treatment of the tail phenomenon for a broad class of models via a Green's function formalism and establishes the following. (i) The tail is governed by a cut of the frequency Green's function G~(ω)\tilde G(\omega) along the −-~Im~ω\omega axis, generalizing the Schwarzschild result. (ii) The ω\omega dependence of the cut is determined by the asymptotic but not the local structure of space. In particular it is independent of the presence of a horizon, and has the same form for the case of a star as well. (iii) Depending on the spatial asymptotics, the late time decay is not necessarily a power law in time. The Schwarzschild case with a power-law tail is exceptional among the class of the potentials having a logarithmic spatial dependence. (iv) Both the amplitude and the time dependence of the tail for a broad class of models are obtained analytically. (v) The analytical results are in perfect agreement with numerical calculations

    Mitochondrial diversity analysis of Glossina palpalis gambiensis from Mali and Senegal

    Get PDF
    West African riverine tsetse populations of Glossina palpalis gambiensis Vanderplank (Diptera: Glossinidae) were investigated for gene flow, inferred from mitochondrial diversity in samples of 69 flies from Senegal and 303 flies from three river drainages in Mali. Four polymorphic mitochondrial loci were scored. Mean haplotype diversities were 0.30 in Mali and 0.18 over both Mali and Senegal. These diversities estimate the probabilities that two randomly chosen tsetse have different haplotypes. Substantial rates of gene flow were detected among flies sampled along tributaries belonging to the river basins of the Senegal, Niger, and Bani in Mali. There was virtually no gene flow between tsetse in Senegal and Mali. No seasonal effects on gene flow were detected. The implications of these preliminary findings for the implementation of area-wide integrated pest management (AW-IPM) programmes against riverine tsetse in West Africa are discussed

    Dependence of Variational Perturbation Expansions on Strong-Coupling Behavior. Inapplicability of delta-Expansion to Field Theory

    Get PDF
    We show that in applications of variational theory to quantum field theory it is essential to account for the correct Wegner exponent omega governing the approach to the strong-coupling, or scaling limit. Otherwise the procedure either does not converge at all or to the wrong limit. This invalidates all papers applying the so-called delta-expansion to quantum field theory.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/34

    Constructing Exactly Solvable Pseudo-hermitian Many-particle Quantum Systems by Isospectral Deformation

    Full text link
    A class of non-Dirac-hermitian many-particle quantum systems admitting entirely real spectra and unitary time-evolution is presented. These quantum models are isospectral with Dirac-hermitian systems and are exactly solvable. The general method involves a realization of the basic canonical commutation relations defining the quantum system in terms of operators those are hermitian with respect to a pre-determined positive definite metric in the Hilbert space. Appropriate combinations of these operators result in a large number of pseudo-hermitian quantum systems admitting entirely real spectra and unitary time evolution. Examples of a pseudo-hermitian rational Calogero model and XXZ spin-chain are considered.Comment: To appear in the Special Issue PHHQP 2010, International Journal of Theoretical Physics; 16 pages, LateX, no figur

    Have Superheavy Elements been Produced in Nature?

    Full text link
    We discuss the possibility whether superheavy elements can be produced in Nature by the astrophysical rapid neutron capture process. To this end we have performed fully dynamical network r-process calculations assuming an environment with neutron-to-seed ratio large enough to produce superheavy nuclei. Our calculations include two sets of nuclear masses and fission barriers and include all possible fission channels and the associated fission yield distributions. Our calculations produce superheavy nuclei with A ~ 300 that however decay on timescales of days.Comment: 12 pages, 11 figure

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
    • 

    corecore