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Abstract Conventional particle theories such as the Standard Model have a number
of freely adjustable coupling constants and mass parameters, depending on the sym-
metry algebra of the local gauge group and the representations chosen for the spinor
and scalar fields. There seems to be no physical principle to determine these parame-
ters as long as they stay within certain domains dictated by the renormalization group.
Here however, reasons are given to demand that, when gravity is coupled to the sys-
tem, local conformal invariance should be a spontaneously broken exact symmetry.
The argument has to do with the requirement that black holes obey a complementarity
principle relating ingoing observers to outside observers, or equivalently, initial states
to final states. This condition fixes all parameters, including masses and the cosmo-
logical constant. We suspect that only examples can be found where these are all of
order one in Planck units, but the values depend on the algebra chosen. This paper
combines findings reported in two previous preprints (G. ’t Hooft in arXiv:1009.0669
[gr-qc], 2010; arXiv:1011.0061 [gr-qc], 2010) and puts these in a clearer perspective
by shifting the emphasis towards the implications for particle models.
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1 Introduction: Splitting the Functional Integral

The Einstein-Hilbert action of the gravitational part of a generally covariant theory
reads

S EH =
∫

d4x

√−g

16πGN

(R − 2�), (1.1)

where for later convenience we already added a possible cosmological term −2�,
and GN is Newton’s constant. The total reparametrization invariant action is written
as

Stotal = SEH +
∫

d4x
√−gLmat, (1.2)

where the matter Lagrangian Lmat is written in a generally covariant manner using
the space-time metric gμν(x). To study conformal invariance, it is useful to split the
metric tensor gμν(x) as follows:

gμν(x)
def= ω2(x)ĝμν(x), (1.3)

where ĝμν(x) may be subject to some additional constraint such as

det(ĝ) = −1, (1.4)

besides imposing a gauge condition for each of the n = 4 coordinates. Condition
(1.4) is not at all necessary; it is just one of the possible choices for fixing the gauge
concerning the following local gauge transformation,

ĝμν(x) → λ2(x)ĝμν(x), ω(x) → λ−1(x)ω(x). (1.5)

This transformation, which is not a coordinate transformation, will be referred to as
a local conformal transformation. We note that a special way to fix the gauge here
would simply be

ω(x) → 1, (1.6)

in which case the conventional theory is reobtained. On the other hand, however,
one could note that, if λ(x) is taken to be constant, this transformation is a scale
transformation for the modified distance unit dŝ2 = ĝμνdxμdxν . Furthermore, if
λ(x) = �2/x2, where � is a fixed constant, we can transform a flat ĝμν back into
a flat space-time metric if it is combined with the space-time transformation

xμ → �2xμ/x2; (1.7)

this will always be referred to as a special (or global) conformal transformation.
The gauge choice (1.6) could be interpreted as the ‘unitarity gauge’ while a con-

formal Higgs mechanism takes place: the “vacuum expectation value” of ω is one.
Let us write the functional integration procedure as

∫
Dgμν(x)eScoordfix [· · · ] =

∫
Dω(x)

∫
Dĝμν(x)eSconffix+coordfix [· · · ], (1.8)
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where Scoordfix is the gauge fixing constraint for the local coordinate reparametriza-
tion ambiguity, including the associated Faddeev Popov ghost, and Sconffix+coordfix

fixes both the coordinate reparametrization ambiguity and the conformal gauge am-
biguity.1 The latter may or may not be chosen to depend on ω(x). The interesting
case is if it does not, thus ruling out the gauge choice (1.6). In that case, we can carry
out the functional integral over ω(x) to obtain an effective action in terms of ĝμν and
the matter fields which is still totally invariant under local conformal transformations.
It is this effective conformally invariant theory that can be used to produce a black
hole theory with a complementarity principle [3]. As we shall see, the constraint that
makes this complementarity principle work, also gives constraints on all matter field
interactions, so that no freely adjustable constants of nature remain.

In the standard perturbation expansion, the integration order does not matter. Also,
if dimensional regularization is employed, the choice of the functional metric in the
space of all fields ω(x) and ĝμν(x) is unambiguous, as any effects that depend on
this choice are cancelled out by the Faddeev Popov ghost contributions.

If there had been no divergences in the theory at all, one would have expected the
following scenario:

– After integrating over all scale functions ω(x), but not yet over ĝμν , the resulting
effective action in terms of ĝμν and the matter fields should be expected to stay
locally conformally invariant, i.e. if we would split ĝμν again as in (1.3),

ĝμν(x)
?= ω̂2(x) ˆ̂gμν, (1.9)

no further dependence on ω̂(x) should be expected.
– Therefore, the effective action should now describe a conformally invariant theory,

both for gravity and for matter. Because of this, the effective theory might be ex-
pected to be renormalizable, or even finite! If any infinities do remain, one might
again employ dimensional renormalization to remove them.

However, this expectation is jeopardized by a conspicuous difficulty: the ω integra-
tion, as well as the matter integrations and the ĝμν integration, are indeed ultraviolet
divergent [4–9]. The fact that the original theory (1.1) was not renormalizable is here
reflected in the fact that counter terms will be needed that do not occur in the lowest
order terms for ĝμν , as we shall see. On top of this, we shall encounter anomalies that
violate local conformal invariance [10, 11]. What is the physical meaning of these
anomalies? Can we, and should we, cure them by having them cancel out? This is
the question that will be addressed. The answer will lead us to new constraints on
the system: the renormalizable particle interactions will be subject to algebraic con-
ditions.

In Sect. 2 the theory in its new jacket is being discussed. It is found that the ω inte-
gration is technically identical to the integration over a conventional, renormalizable
scalar field. We see how local conformal invariance continues to be a formal local
symmetry of the system, which might be said to be spontaneously broken, akin to the

1A fine choice would be, for instance, ∂μĝμν = 0 and det(ĝμν) = −1. Again, the usual Faddeev Popov
quantization procedure is assumed.
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Higgs mechanism. If there is any difficulty in quantizing and renormalizing gravity,
it is in the integration over ĝμν . In this formalism, somewhat disturbingly, there is no
tree diagram contribution to the ĝμν propagator; it all must come from the loops. This
might still have been acceptable, if there had not been any anomaly.

There are, in fact, two important types2 of anomalies. In Sects. 3 and 4, the first of
these is discussed: an anomaly that occurs in a curved background of a ĝμν metric.
We begin by strictly adhering to the standard formalism of quantum gravity; anoma-
lies are found that, in the standard formalism, are taken for granted. Then, in Sect. 5,
an anomaly that is already there in a flat background is considered. We observe that,
apart from the anomalies, the standard canonical theory can be viewed upon as a
conformal Higgs theory. It is here that we insist that, instead, we should be dealing
with an exact conformal Higgs mechanism, where local conformal invariance should
not be broken by anomalies, and this condition forces us to introduce a new phys-
ical constraint. We shall observe that this constraint can be easily imposed for the
second type of anomalies. Thus, the required anomaly cancelation can be enforced
in a flat, or at least Ricci-flat background. This is harder to achieve for the first type
of anomalies, and we conclude that the functional integral over ĝμν is not yet well
understood; evidently, our theory is not anywhere close to a “theory of everything”,
but in Sect. 6 we do find a result when local conformal invariance is asked for in a
flat background: all parameters that previously have been looked upon as freely ad-
justable real parameters—or at least freely adjustable within some range—are now
all fixed. The calculation is done in Sect. 7. This will confront us with an other prob-
lem: the hierarchy problem: why do dimensionless ratios of physical constants in
our world take extremely large or extremely small values? This problem, and other
features, are briefly discussed in Sect. 8. Conclusions are described in Sect. 9.

2 The Locally Conformal Formalism Including Matter Fields

In terms of the fields ω(x) and ĝμν(x), the Einstein-Hilbert action reads

SEH =
∫

d4x
1

2κ2

(
R̂ω2 + 6ĝμν∂μω∂νω − 2�ω4

)
, (2.1)

where κ2 = 8πGN , and R̂ is the Ricci scalar associated to ĝμν . When adding the
matter lagrangian, it is convenient to split that into conformally invariant kinetic parts,
mass terms, and interaction terms. In a simplified notation (later, in Sect. 5, we will
be more precise), one has

φmat = {Aμ(x),ψ(x), ψ̄(x),ϕ(x)}, Lmat = Lkin + Lmass + Lint; (2.2)

Lkin = −1

4
ĝμαĝνβFμνFαβ − 1

2
ĝμν∂μϕ∂νϕ − 1

12
R̂ϕ2 − ψ̄γ μD̂μψ; (2.3)

2A third well-known anomaly is associated to the Gauss-Bonnet term, a topological term in the Lagrangian
that does not contribute to physical effects in topologically trivial space-times, see (A.12) in Appendix A.
Since, even in the case of black holes, our theory forces space and time to be topologically trivial, this third
anomaly appears to play no direct role here, and it will not further be discussed.



Found Phys (2011) 41:1829–1856 1833

Lmass = −1

2
m2

sω
2ϕ2 − ψ̄ωmdψ. (2.4)

Here, Fμν = ∂μAν − ∂νAμ; the kinetic term for the Dirac fields is shorthand for
the corresponding expression using a vierbein field êa

μ for the metric ĝμν with its
associated connection field. ms stands short for the scalar masses and md for the
Dirac masses. The term 1

12 R̂ϕ2 could be removed by a field redefinition, but is kept
here for convenience, making the scalar lagrangian explicitly conformally invariant.

Then, we have the matter interaction terms, such as quartic scalar interaction terms
and Yukawa interaction terms,

Lint = − 1

4!λϕ4 − yψ̄ϕψ + · · · , (2.5)

where y stands for the Yukawa interaction constants (possibly including γ 5 terms)
and · · · for possible Yang-Mills interactions.

The relevant local conformal transformations of the matter fields and the vierbein
are3

ϕ(x) → λ−1(x)ϕ(x),

êa
μ(x) → λ(x)êa

μ(x),

ψ̄(x) → λ−3/2(x)ψ̄(x),

ψ(x) → λ−3/2(x)ψ(x).

(2.6)

We notice now that, by construction, all contributions to the total lagrangian are
invariant under these transformations, when combined with (1.5). It is no coincidence
that the contribution of the ω field, (2.1), has the same form as that of the confor-
mal scalar fields ϕ, as they both transform the same way. In particular, we see the
resemblance between the cosmological term and the λϕ4 coupling. To exploit this,
we write

ω(x) = iκ̃η(x), κ̃2 = 1

6
κ2 = 4

3
πGN, (2.7)

so that η(x) acts exactly as a scalar field. The factor i indicates that the functional
integral over ω has to go over a contour parallel to the imaginary axis, a well-known
feature of canonical quantum gravity, important particularly if one wishes to make
the Wick rotation to a Euclidean background spacetime.

One important distinction between the η field and the other scalar fields ϕ(x)

remains: all those interactions that are odd in the η field must have purely imaginary
coupling constants, a peculiar consequence of the unitarity requirement of quantum
gravity (terms such as the Dirac mass term in (2.4) must be real).

Since (2.1) is the entire the Einstein-Hilbert action, we see that no kinetic term
survives for the ĝμν field. One might be tempted to invent a kinetic term, but then

3To understand how spinors ψ̄, ψ transform, one has to realize that their covariant derivative D̂μ de-
pends on the vierbein field êa

μ which is therefore not invariant under local conformal transformations. The
spinorial kinetic term in (2.3) can then be seen to be invariant under (2.6) up to a total derivative.
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we have to realize that this may jeopardize unitarity; we know that without any such
term, the standard interactions are unitary perturbatively. We return to these questions
at the end of Sect. 4. In Appendix A we briefly remind the reader of the local con-
formal properties of the curvature fields. The Riemann and Ricci curvatures do not
transform in a simple way, but those parts of the Riemann curvature that are orthogo-
nal to the Ricci curvature, called the Weyl curvature, a 4-tensor with 10 independent
components, does transform into itself. In principle, this allows us to write exactly
one kind of kinetic term for ĝμν , which would be locally conformally invariant and
hence renormalizable, but unfortunately not manifestly unitary. Possible procedures
to restore unitarity for such models were suggested by Mannheim [12–18], but these
are controversial; operators referring to the metric fail to be hermitean, a serious flaw
according to many researchers.

By construction, all terms (2.1)–(2.5) of our Lagrangian are invariant under the
local conformal transformations (1.5) and (2.6). When black hole Hawking radiation
is considered, different observers may have different ideas about what the vacuum
state is, and as was argued in [3], they may therefore also assign different values to
the vacuum expectation value of the field ω(x). Since the Ricci curvature R̂μν(x)

is not at all invariant under the conformal transformation (1.5), these observers also
disagree about the matter distribution in their universe. It was argued in [3] that this
is inevitable: the outside observers will see the need to include the back reaction of
Hawking radiation to the r.h.s. of Einstein’s field equation, while an ingoing observer
will not wish to include that. This is the central theme of the black hole complemen-
tarity issue. However, there now is one important complication: conformal anomalies.
They should not be allowed to ruin exact local conformal invariance. A local confor-
mal transformation is necessary to transform from one space-time to another where
observers disagree about the ground state. In Appendix A it is also derived how a
local conformal transformation affects the stress-energy-momentum tensor of matter.
Appendix B handles the field equations that would be generated by the Weyl-squared
action. They are found to be Einstein’s equations with an energy momentum source
that obeys equations by itself.

3 The Divergent Part of the ω Integral in a Curved Background Space-Time

Calculations related to the conformal term in gravity, and their associated anomalies,
date back from the early 1970s and have been reviewed among others in a nice paper
by Duff [11]. In particular, we here focus on footnote (4) in that paper.4

First, we go to n space-time dimensions, in order later to be able to perform di-
mensional renormalization. For future convenience (see (3.2)), we choose to replace

4This footnote reads: 4If one starts with a classically non-Weyl invariant theory (e.g. pure Einstein gravity)

and artificially makes it Weyl invariant by introducing via a change of variables g′
μν = e2σ(x)gμν(x) an

unphysical scalar spurion σ(x), then unitarity guarantees that no anomalies can arise because this artificial
Weyl invariance of the quantum theory, g′

μν = �2(x)g′
μν(x) with e2σ(x) → �2(x)e2σ(x) , is needed to

undo the field redefinition and remove the spurious degree of freedom. Professor Englert informed me in
Trieste that this is what the authors of [23] had in mind when they said that anomalies do not arise. Let us
all agree therefore that many of the apparent contradictions are due to this misunderstanding.
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the parameter ω then by ω2/(n−2), so that (1.3) becomes

gμν(x) = ω
4

n−2 ĝμν(x). (3.1)

Temporarily, we ignore the cosmological term, so that there is no ω4 interaction, in
order to be able to do perturbative calculations. In terms of ĝμν and ω, the Einstein-
Hilbert action (1.1), with the matter contribution added, then reads

S =
∫

dnx
√

−ĝ

(
1

16πGN

(
ω2R̂ + 4(n − 1)

n − 2
ĝμν∂μω∂νω

)
+ Lmat(ĝμν),ω

)
,

(3.2)
replacing (2.1). We use the caret (ˆ) to indicate all expressions defined by the tensor
ĝμν , such as covariant derivatives, as if that were the true metric tensor.

Let us assume the absence of terms linear in the matter fields φ, which usually
are removed anyway by shifting the scalar fields. Then there are also no terms that
are cubic in the ω field. The kinetic terms have been carefully constructed so as to be
conformally invariant, hence ω-independent. The mass terms are quadratic in ω, and
cubic scalar interaction terms, as well as fermionic mass terms, are linear in ω. In
this case, then, the ω integration is purely Gaussian, and produces a determinant that
can be computed precisely as a power series when the background metric is curved.

Note that, in ‘Euclidean gravity’, the ω integrand has the wrong sign. This is why
ω must be chosen to be on a complex contour, as we did in (2.7). In practice, it is
easiest to do the functional ω integration perturbatively, by writing

ĝμν(x) = ημν + κhμν(x), ημν = diag(−1,1,1,1), κ = √
8πGN, (3.3)

and expanding in powers of κ (although later we will see that that expansion can
sometimes be summed).

We replace ω(x) by η(x) as in (2.7), where, in n dimensions, the constant κ̃ is
now given by

κ̃2 = 2πGN(n − 2)

n − 1
. (3.4)

This turns the action (3.2) into5

S =
∫

dnx
√

−ĝ

(
−1

2
ĝμν∂μη∂νη − 1

2

n − 2

4(n − 1)
R̂η2 + Lmat(ĝμν, iη)

)
. (3.5)

We see that there is a kinetic term (perturbed by a possible non-trivial space-time
dependence of ĝμν ), and a direct interaction, “mass” term proportional to the back-
ground scalar curvature R̂:

n − 2

4(n − 1)
R̂

n→4−→ 1

6
R̂, (3.6)

5Note that, therefore, Newton’s constant disappears nearly completely (its use in (3.3) is inessential). It
only returns when there are explicit non-conformal terms in the matter lagrangian, such as mass terms.
This a characteristic feature of this approach.
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The expressions for the one-loop diagrams of the η field diverge at n → 4. By
using general covariance, one can deduce right away that the divergent terms must all
combine in such a way that they only depend on the Riemann curvature. Dimensional
arguments then suffice to conclude that the coefficients must be local expressions in
the squares of the curvature.

The key calculations for the divergent parts have already been performed in
1973 [9]. There, it was found that a lagrangian of the form

L = √−g

(
−1

2
gμν(x)∂μϕ∂νϕ + 1

2
M(x)ϕ2

)
, (3.7)

will generate an effective action, whose divergent part is of the form

Sdiv =
∫

dnx�div(x),

�div =
√−g

8π2(4 − n)

(
1

120

(
RμνR

μν − 1

3
R2

)
+ 1

4

(
M + 1

6
R

)2
) (3.8)

(we use here a slightly modified notation, implying, among others, a sign switch
in the definition of the Ricci curvature, and a minus sign as ref. [9] calculated the
Lagrangian L + �L, �L = −�div needed to obtain a finite theory.)

In our case, we see that, in the Lagrangian (3.5),

M = −1

6
R̂, �div =

√−ĝ

960π2(4 − n)

(
R̂μνR̂

μν − 1

3
R̂2

)
, (3.9)

since the second term in (3.8) cancels out exactly. Indeed, it had to cancel out, as (3.9)
has to reflect the conformal symmetry, see (A.13) in Appendix A.

To see what the divergence here means, we use the fact that the mass dependence
of a divergent integral typically takes the form

f (n)mn−4�

(
2 − 1

2
n

)

→ f (n)

4 − n

(
1 + (n − 4) log

(
m

�

))
→ f (4)

(
log� + 1

4 − n

)
+ finite, (3.10)

where m stands for a mass or an external momentum k, and � is some reference mass,
such as an ultraviolet cutoff. Thus, the divergent expression 1/(4−n) generally plays
the same role as the logarithm of an ultraviolet cutoff �.

It is clear that an ultraviolet cut-off would violate local conformal invariance.
Equivalently, one may note that the theory is conformally invariant in 4 dimensions
but not in n dimensions. A conformally invariant counter lagrangian would then have
to be of the form of (A.16):

�L = C(n)ω
2(n−4)
n−2

√
−ĝŴαβμνŴ

αβμν, C(n) = 1

1920π2(n − 4)
. (3.11)
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If we remove the n dependence in the power of ω, conformal invariance is broken
and an anomaly emerges, an effective interaction proportional to log(ω). If we keep
the n-dependent power of ω in (3.11) then our theory has an essential singularity (a
branch cut) at ω = 0 (η = 0). Field theories do not normally have such a singularity
in the field dependence of the fundamental interactions, and we may ask ourselves
whether it is allowed here. Note that the region ω → 0 describes the zero distance
limit of quantum gravity, a domain that is not well understood.

4 Divergences due to Matter

The conformally invariant kinetic term for scalar fields ϕ(x) is described by the action

Lϕ
conf = −1

2

√−g

(
gμν∂μϕ∂νϕ + 1

6
Rϕ2

)
, (4.1)

where the second term is a by now familiar necessity for complete conformal in-
variance. The extra term with the Ricci scalar is in fact the same as the term (3.6)
in (3.5).

The contribution of these scalar fields to the divergences of the one-loop diagrams
with only external ĝμν lines is exactly the same as that of the ω (or η) fields, and the
contribution of the Maxwell or Yang Mills kinetic terms and the spinor kinetic terms
in (2.3) can also be calculated. The outcome of this calculation is well-known [19–27]
and the calculation for the spin 0, 1

2 and 1 case was once more recapitulated in [1].
If we have one ω field, N0 real scalar field components, N1/2 elementary Majorana
spinor fields (or 1

2N1/2 Dirac fields), N1 real vector fields, N3/2 gravitinos and N2
spin 2 fields, the total divergence is described by the effective action

Seff = 2C

∫
dnx

√
−ĝ

(
R̂μνR̂μν − 1

3
R̂2

)
, (4.2)

where

C = 1

16π2(4 − n)

(
1

120
(1 + N0) + 1

40
N1/2 + 1

10
N1 − 233

720
N3/2 + 53

45
N2

)
. (4.3)

Here, the first 1 is the effect of the conformal component ω of gravity itself. In this
paper we omit the last two terms of this expression because they refer to not evidently
renormalizable fields.6

The contributions from all renormalizable fields clearly add up with the same sign.
This, in fact, could have been expected from simple unitarity arguments, but as such
arguments famously failed when the one-loop beta functions for different particle
types were considered, it is preferred to do the calculation explicitly [1].

Our question now is what to do with this divergence. There are various options to
be considered:

6They were mentioned here just to note that there is a minus sign due to gravitinos, so that a resolution of
the anomaly problem might lie there, but it will not be further pursued.
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i. The action (1.1) no longer properly describes the situation at scales close to the
Planck scale. At |k| ≈ MPl , we no longer integrate over ω(k), which has two con-
sequences: a natural cut-off at the Planck scale, and a breakdown of conformal
invariance. Indeed, this would have given the badly needed scale dependence to
obtain a standard interpretation of the amplitudes computed this way, if one would
take the following viewpoint: consider the canonical action, which is the sum of
(2.1) to (2.5), and consider the functional integral over the field ω that was just
performed. Then one observes that, in the effective action thus obtained, all ref-
erence to Newton’s constant GN is hidden in the rescaled massive parameters of
the renormalized matter lagrangian. One might welcome the idea that an explicit
breakdown of conformal invariance, in terms of anomalies, may produce more
non-trivial structure in the theory.

This option, however, we dismiss, because for the discussion of black holes,
exact local conformal invariance is needed explicitly. As in a Higgs theory, there
is nothing wrong with attributing all observed breakdown of the symmetry (here
conformal symmetry) to the Higgs mechanism.

ii. Have all divergences cancel out. In some supergravity theories, the conformal
anomaly indeed cancels out [28] to zero.7 The problem here is that unitarity is
questionable in these theories. As long as we limit ourselves to conventional,
renormalizable, matter fields, their contributions, together with the contribution
of the η field, all add up with the same sign. Of course, interaction effects were
not yet included in our calculation, but it seems unlikely that they could give any
relief; in that case, one would definitely have to require the interactions to be
strong, a murky terrain of this theory in any case.

It should be added that, if the one loop diagrams for the spin 0, 1
2 and 1 fields

would all turn out either to be finite or renormalizable in the standard way, the
situation for the remaining fields ĝμν would still be exotic. As there are no prop-
agator terms at all in the classical lagrangian (2.1) or (3.2), the propagator and
the interaction terms would all have to come from the loop diagrams. They would
be conformally invariant but that would imply an effective kinetic term with four
derivatives, hence an effective 1/k4 propagator that could easily develop unphys-
ical, Landau-like poles. Thus, with this option, we are not out of the woods.

Incidently, this feature shows that canonical quantum gravity has much in common
with Higgs theories in the Higgs phase, the ω field playing the role of the Higgs field
with non-vanishing vacuum expectation value, while renormalizability of the system
is ruined by the absence of a decent kinetic term in the action for the degrees of
freedom in the symmetric mode. This suggests the following alternative scenario:

iii. Add a kinetic term for the ĝμν field in the action. This must be locally confor-
mally invariant, and therefore only the expression (4.2), with a finite coefficient
C, qualifies. The problem here is that, regardless whether we are in the Higgs
mode or not, this kinetic term is not of the standard canonical type, being quartic
in the space and time derivatives, so that unitarity of the evolution operator is far
from guaranteed. Authors of [12–18] made some brave attempts, but we note that

7I thank M. Duff for this observation.
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local conformal invariance does not admit a unique definition of energy (as this
is not a conformal invariant), so we cannot even begin constructing a Fock space
with only positive energy physical particle states.

iv. A fourth option is to keep the coefficient C of the Weyl action (4.2) very large,
say 20 to 40 orders of magnitude (it is dimensionless). In this case the coeffi-
cient for the graviton propagator becomes very small. In the Higgs mode, the full
propagator Pμν|αβ(k) is the inverse of an expression of the form

�(k) ≈ −(k2 + Ck4), (4.4)

which will show a k dependence going like

P(k) ≈ 1

k2 + Ck4
≈ 1

k2
− 1

k2 + m2
; m2 = 1/C. (4.5)

This means that, at distances smaller than
√

C in Planck units, the gravitational
force is screened, by opposite sign massive gravitons. On the one hand one might
object that such wrong sign gravitons violate unitarity, but this time the theory
is nearly classical (all gravitational loop corrections are down by many orders
of magnitude compared to the tree diagrams, at all scales, so that, at all scales,
violation of unitarity is minute. Even if this theory cannot be correct formally,
one might argue that inconsistencies at the 20th decimal place or beyond might
be something to worry about later.

Small distance screening of the gravitational force may be an interesting
phenomenon to be looked for experimentally.

v. Finally, more realistically perhaps, one might simply decide to leave the problem
of the functional integral over the ĝμν fields open for later. This author suspects
that a full theory will go beyond simple-minded quantum field theories, and even
calls into question the validity of quantum mechanics itself (or more precisely,
its usual Copenhagen interpretation), but, as for this paper, the issue will not be
further pursued.

It may or may not be that the local conformal anomaly can be removed. We do point
out that the anomaly discussed in this section only occurs when the background met-
ric has curvature (either Weyl or Ricci), in which case there is a big distinction be-
tween local conformal transformations and space-time reparametrizations. In the next
section, the anomaly in flat space-time is considered. There, we can do much more,
as we shall see.

5 The Case of a Flat Background

Let us assume that the matter fields φmat consist of Yang-Mills fields Aa
μ, Dirac fields

ψ̄, ψ and scalar fields ϕ, the latter three sets being in some (reducible or irreducible,
chiral or non chiral) representation of the local Yang-Mills gauge group. As in the
previous sections, gravitinos, or spin 3

2 fields, are not included in this investigation,
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conceivably a mistake, perhaps to be remedied in future investigations.8 In this sec-
tion, we have a flat “background” metric ĝμν . Note however, that the original metric
gμν = ω2(x)ĝμν , is not flat.

For brevity, we will write complex scalar fields as pairs of real fields, and if Weyl
or Majorana fermions occur, the Dirac fields can be replaced by pairs of these.9 Let
us rewrite the lagrangian for matter interacting with gravity more precisely than in
Sects. 2 and 4:

L(ĝμν, η,φmat) = −1

4
Ga

μνG
a
μν − ψ̄γ̂ μD̂μψ − 1

2
ĝμν(DμϕDνϕ + ∂μη∂νη)

− 1

12
R̂(ϕ2 + η2) − V4(ϕ) − iV3(ϕ)η + 1

2
κ̃2m2

i η
2ϕ2

i − �̃η4

− ψ̄(yiϕi + iy5
i γ 5ϕi + iκ̃mdη)ψ, (5.1)

where the ω field was replaced by the η field, with (2.7), Gμν is the (non Abelian)
Yang-Mills curvature, and Dμ and D̂μ are covariant derivatives containing the Yang-
Mills fields; γ̂μ and D̂μ also contain the vierbein fields and connection fields associ-
ated to ĝμν ; the Yukawa couplings yi , y5

i and fermion mass terms md are matrices in
terms of the fermion indices. The scalar self interactions, V3(ϕ) and V4(ϕ) must be
third and fourth degree polynomials in the fields ϕi :

V4(ϕ) = 1

4!λϕ4 = 1

4!λ
ijk�ϕiϕjϕkϕ�; (5.2)

V3(ϕ) = 1

3! g̃
ijk

3 ϕiϕjϕk, g̃3 = κ̃g3. (5.3)

In (5.1), like md , also m2
i δij are (not necessarily positive) mass matrices, in general.

Furthermore, �̃ stands for 1
6 κ̃2�. Of course, all terms in (5.1) must be fully invariant

under the Yang-Mills gauge rotations. They must also be free of Adler Bell Jackiw
anomalies [32, 33].

Now that the dilaton field η has been included, the entire lagrangian has been
made conformally invariant. It is so by construction, and no violations of conformal
invariance should be expected. This invites us to consider the beta functions of the
theory. Can we conclude at this point that the beta functions should all vanish?

Let us not be too hasty. In the standard canonical theory, matter fields and their
interactions are renormalized. Let us consider dimensional renormalization, and the
associated anomalous behavior under scaling. In 4 − ε dimensions, where ε is in-
finitesimal, the scalar field dimensions are those of a mass raised to the power 1−ε/2,
so that the couplings λ have dimension ε. This means that in most of the terms in the
lagrangian (5.1) the integral powers of η will receive extra factors of the form η±ε

or η±ε/2, which will then restore exact conformal invariance at all values for ε. If we

8Note that supersymmetry is not a basic ingredient of this theory; indeed, the conformal invariance of
theories with supersymmetry appears to be an obstacle rather than an asset in our approach, as we shall
see.
9A single Weyl or Majorana fermion then counts as half a Dirac field.
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follow standard procedures, we accept that η is close to −i/κ̃ , so that singularities
at η → 0 or η → ∞ are not considered to be of any significance. Indeed, the limit
η → 0 may be seen to be the small-distance limit. This is the limit where gravity goes
wrong anyway, so why bother?

However, now one could consider an extra condition on the theory. Let us assume
that the causal structure, that is, the location of the light cones, is determined by ĝμν ,
and that there exist dynamical laws for ĝμν . This was seen to be a very useful starting
point for a better understanding of black hole complementarity [3]. The laws deter-
mining the scale ω(x) should be considered to be dynamical laws, and the canonical
theory of gravity itself would support this: formally the functional integral over the η

fields is exactly the same as that for other scalar fields.
In view of the above, we do think it is worthwhile to pursue the idea that the η field

must be handled just as any other scalar component of the matter fields; but then, in
the ε → 0 limit, after renormalization, fractional powers would lead to log(η) terms,
and these must clearly be excluded. Renormalization must be done in such a way that
no traces of logarithms are left behind. Certainly then, a scale transformation, which
should be identical to a transformation where the fields η are scaled, should not be
associated with anomalies. Implicitly, this also means that the region η → 0 is now
assumed to be regular. This is the small distance region, so that, indeed, our theory
says something non-trivial about small distances. This is why our theory leads to new
predictions that eventually should be testable. Predictions follow from the demand
that all beta functions of the conformal “theory” (5.1) must vanish.

We emphasize that this does not mean that the matter lagrangian itself must have
vanishing β functions. It may have mass terms and other dimensionfull couplings,
which just means that the η field couples nontrivially to matter. Only after adding the
η field, we now demand that the β functions all vanish.

Note that one set of terms is absent in (5.1): the terms linear in ϕ and hence cu-
bic in η. This, of course, follows from the fact that, usually, no terms linear in the
scalar fields are needed in the standard matter lagrangians; such terms can easily be
removed by translations of the fields: ϕi → ϕi + ai for some constants ai . Thus, the
classical lagrangian is stationary when the fields vanish: ϕ = 0 is a classical solution.
In our present notation, this observation is equivalent to the observation that fields
may be freely transformed into one another without modifying the physics. One such
transformation is a rotation of one of the scalar fields, say ϕ1, into the η field:

{
ϕ1 → ϕ1 coshα1 + iη sinhα1,

η → η coshα1 − iϕ1 sinhα1,
(5.4)

where α1 stands for the original shift of the field ϕ1. The transformation is taken to
be a hyperbolic rotation because the “kinetic term” − 1

2 (∂η2 + ∂ϕ2) = 1
2 (∂ω̃2 − ∂ϕ2)

in (5.1) has to be invariant; η is imaginary.
In the “unitarity gauge” η = −i/κ̃ , corresponding to ω = 1, we see that the scalar

field ϕ1 is shifted by a constant. The second transformation, that of η in (5.4), is a
simple redefinition of the ω field that can be made undone by a local conformal trans-
formation, so it has little physical significance; it is there because of the conformal
coupling − 1

12R(η2 + ϕ2) in (5.1). In most cases, these transformations need not be
considered since terms linear in ϕ will in general not be gauge invariant.
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Notice also that the Yang-Mills fields are not directly coupled to the η field. If we
stay close to the “unitarity gauge”, η → −i/κ̃ , we can see why this is so. Since not
η, but ω̃ is real, the invariant quantity is ϕ2 − κ̃2ω2. Rotating ϕ fields with η fields
would therefore be a non-compact transformation, and Yang-Mills theories with non-
compact Lie groups usually do not work. There is food for thought here, but as yet
we shall not pursue that.

6 The β Functions

Thus, we return to a theory to which all known quantum field theory procedures can
be applied, the only new thing being the presence of an extra, gauge neutral, spinless
field η, and the perfect local scale invariance of the theory.

We arrived at the lagrangian (5.1), and we wish to impose on it the condition
that all its beta functions vanish, since local conformal invariance has to be kept. As
the theory is renormalizable, the number of beta functions is always exactly equal
to the number of freely adjustable parameters. In other words: we have exactly as
many equations as there are freely adjustable unknown variables, so that all coupling
constants, all mass terms and also the cosmological constant, should be completely
fixed by the equations βi = 0. They are at the stationary points. Masses come in
the combination κ̃mi and the cosmological constant in the combination κ̃2�, so all
dimensionful parameters of the theory will be fixed in terms of Planck units.

In principle, there is no reason to expect any of these fixed points to be very close
yet not on any of the axes, so neither masses nor the cosmological constant can be
expected to be unnaturally small, at this stage of the theory. In other words, as yet no
resolution of the hierarchy problem is in sight: why are many of the physical mass
terms 40 orders of magnitude smaller than the Planck mass, and the cosmological
constant more than 120 orders of magnitude? We have no answer to that in this paper,
but we shall show that the equations are quite complex, and exotic solutions cannot
be excluded.

Also, the existence of infinitely many solutions cannot be excluded. This is be-
cause one can still adjust the composition and the rank(s) of the Yang-Mills gauge
group(s), as well as one’s choice of the scalar and (chiral) spinor representations.10

These form infinite, discrete sets. However, many choices turn out not to have any
non trivial, physically acceptable fixed point at all: the interaction potential terms
V (ϕ) must be real and properly bounded, for instance. Searches for fixed points then
automatically lead to vanishing values of some or more of the coupling parameters,
which would mean that the symmetries and representations have not been chosen
correctly.

Every advantage has its disadvantage. Since all parameters of the theory will be
fixed, we cannot apply perturbation theory. However, we can make judicious choices
of the scalar and spinor representations in such a way that the existence of a fixed
point for the gauge coupling to these fields can be made virtually certain. The β

10Which of course must be free of Adler Bell Jackiw anomalies [32–35].
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function for SU(N) gauge theories with Nf fermions and Ns complex scalars in the
elementary representation is

16π2β(g) = −ag3 − (b1g
5 + b2y

2g3) + O(g7), (6.1)

a = 11

3
N − 2

3
Nf − 1

6
Ns, (6.2)

bi = O(N2,NNf ,NNs). (6.3)

Choosing one scalar extra, or one missing, we can have a as small as a = ± 1
6 , while

a quick inspection in the literature [36–40] reveals that, in that case, bi may still have
either sign:11

bi = ±O(N2) (6.4)

depending on further details, such as the ratio of fermions and scalars, the presence
of other representations, and the values of the Yukawa couplings. Choosing the sign
of a opposite to that of b, one then expects that a fixed point can be found at12

g2 = −a/b = O(1/N2). (6.5)

This implies that the relevant coupling at large N , which is g̃2 = g2N , can also
be made small, and hence it is reasonable to presume that the following procedure
is reliable. Let there be ν physical constants, the νth one being the gauge coupling
g, which is determined by the above equation (6.5). If we take all other coupling
parameters to be of order g or g2, then the remaining beta function equations are
reliably given by the one-loop expressions only, which we shall give below. Now
these are ν − 1 equations for the ν − 1 remaining coupling parameters, and they are
now inhomogeneous equations, since the one coupling, g2, is already fixed. All we
have to do now, is find physically acceptable solutions. We already saw that non-
Abelian Yang-Mills fields are mandatory; we shall quickly discover that, besides the
η fields, both fermions and other scalar matter fields are indispensable to find any
non-trivial solutions.

It is illustrative to mention a solution that might spring to mind: N = 4 super
Yang-Mills. We take its lagrangian, and add to that the η field while postulating that
this η field does not couple to the N = 4 matter fields at all. Then indeed all β

functions vanish [41, 42]. However, since the η field is not allowed to couple, the
physical masses are all strictly zero, which disqualifies the theory physically. Note,
however, that also the cosmological constant is rigorously zero. Perhaps the proce-
dure described above can be applied by modifying slightly the representations in this
theory, so that a solution with masses close to zero, and in particular a cosmological
constant close to, but not exactly zero, emerges. Approaches along such lines have
not yet been investigated further.

11This rules out those supersymmetric approaches where the β function would vanish at all orders.
12The Yukawa coupling y will be O(g), so that the b terms together can be handled as a bg5 term.
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The one loop β functions are generated by an algebra [30, 31], in which one sim-
ply has to plug the Casimir operators of the Yang Mills Lie group, the types of the
representations, the quartic scalar couplings and the fermionic couplings. If we write
the scalar fields as

σ0(x) = η(x), σi(x) = ϕi(x), i = 1, . . . , nϕ, (6.6)

then the generic lagrangian can be written as

L = −1

4
Ga

μνG
a
μν − 1

2
(Dμσi)

2 − V (σ) − ψ̄
(
γD + (Si + iγ 5Pi)σi

)
ψ, (6.7)

where σi and ψ̄, ψ are in general in reducible representations of the gauge group, Dμ

is the gauge covariant derivative, V (σ) is a gauge-invariant quartic scalar potential,
and Si and Pi are matrices in terms of the fermion flavor indices. Everything must be
gauge invariant and the theory must be anomaly free [32–35].

The covariant derivatives contain the hermitean representation matrices T a
ij , ULa

αβ

and URa
αβ :

Dμσi ≡ ∂μσi + iT a
ijA

a
μσj ; (6.8)

Dμψα ≡ ∂μψα + i(ULa
αβ P L + URa

αβ P R)Aa
μψβ; P L,R ≡ 1

2
(1 ± γ 5). (6.9)

The gauge coupling constant(s) g are assumed to be included in these matrices T

and U . The operators P L and P R are projection operators for the left- and right
handed chiral fermions.

The group structure constants f abc are also assumed to include a factor g, and
they are defined by

[T a,T b] = if abcT c; [ULa,ULb] = if abcULc; [URa,URb] = if abcURc.

(6.10)
Casimir operators Cg, Cs and Cf will be defined as

f apqf bpq = Cab
g , Tr(T aT b) = Cab

s , Tr(ULaULb + URaURb) = Cab
f .

(6.11)
All these algebraical numbers were defined such that they are either real or hermitean.

All beta functions are given by writing down how the entire lagrangian (6.7) runs
as a function of the scale μ[30, 31]:

μ∂

∂μ
L = β(L) = 1

8π2
�L, (6.12)

�L = −1

4
Ga

μνG
b
μν

(
11

3
Cab

g − 1

6
Cab

s − 2

3
Cab

f

)
− �V

− ψ̄(�Si + iγ 5�Pi)σiψ. (6.13)
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Here,

�V = 1

4
V 2

ij − 3

2
Vi(T

2σ)i + 3

4
(σT aT bσ )2

+ σiVj Tr(SiSj + PiPj ) − Tr(S2 + P 2)2 + Tr[S,P ]2, (6.14)

where Vi = ∂V (σ )/∂σ i , Vij = ∂2V (σ)/∂σi∂σj .
It is convenient to define the complex matrices Wi as

Wi = Si + iPi, W̃i = Si − iPi (6.15)

(Note that, with the field σ0 = η, which has imaginary Yukawa couplings, the func-
tions W̃i and W

†
i need not be the same.) Then,

�Wi = �Si + i�Pi = 1

4
WkW̃kWi + 1

4
WiW̃kWk + WkW̃iWk

− 3

2
(UR)2Wi − 3

2
Wi(U

L)2 + Wk Tr(SkSi + PkPi). (6.16)

If now we write the collection of scalars as {σi = ϕi, σ0 = η}, taking due notice
of the factors i in all terms odd in η, we can apply this algebra to compute all β

functions of the lagrangian (5.1).
The values of the various β functions depend strongly on the choice of the

gauge group, the representations, the scalar potential function and the algebra for
the Yukawa terms, and there are very many possible choices to make. However, the
signs of most terms are fixed by the algebra (6.13)–(6.16). By observing these signs,
we can determine which are the most essential algebraic constraints they impose on
possible solutions. As we shall see, they are fairly restrictive. They are severely re-
strictive if one demands that the cosmological constant be excessively small [2].

7 Solving the Equations β = 0

Consider the dilaton field η added to the lagrangian, as defined in (6.6). This requires
extending the indices i, j, . . . in the lagrangian (6.7) to include a value 0 referring to
the η field. The unusual thing is now that the terms odd in η are purely imaginary,
while all terms in (5.1) are of dimension 4. The effect of this anomalous sign in
the beta function equations is a slight complication. It is illustrative to consider the
general question: can one expect interesting solutions to such equations and how can
they be searched for systematically? Here, we briefly outline a general approach that
is just slightly different from the one in [2].

First, we follow the procedure outlined in Sect. 6, to define the Yang-Mills self
coupling(s) g. We assume that a fixed point is found where g is fairly small, so that
the remaining equations can be handled at the one-loop level, to receive small higher
loop corrections at a later stage. Of course, theories with larger couplings will be
accordingly more difficult to handle. After our program to construct the values of the
other couplings (which all will be proportional to g or g2), we will have to check
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whether a and b in (6.2) and (6.3) indeed have opposite signs, giving a reasonably
small value for g.

We then observe that the Yukawa couplings (where the η field controls the Dirac,
or Majorana, masses), obey equations only containing the other Yukawa couplings
and the gauge constant(s) g, according to (6.16). In that equation, the terms contain-
ing (UR)2 and (UL)2 are linear in W and the rest are cubic in W . Quite generally,
these equations are of the form

Y 3 − g2Y = 0. (7.1)

In particular, the signs in these equations appear to be favorable to the existence of
solutions.

It is helpful that an extremum principle exists. We can find a scalar function H of
the Yukawa couplings Wi, W̃i of the form

H = Tr
(
α(WiW̃i)

2 + α(W̃iWi)
2 + βWiW̃kWiW̃k

− γ
(
(UR)2WiW̃i + (UL)2W̃iWi

) + δ Tr(WiW̃j + WjW̃i)
2), (7.2)

such that, if an infinitesimal variation (δWi, δW ∗
i ) is chosen, the variation δH of H

is given by

δH = ε Tr(δW ∗
i �Wi + �W ∗

i δWi), (7.3)

with �Wi as given by (6.16). One finds that the coefficients α–δ have to be chosen
as follows:

α = 1

8
, β = 1

2
, γ = 3

2
, δ = 1

8
. (7.4)

Thus, the problem of finding a fixed point here is reduced to the search of an ex-
tremum of H . It is easy to see that H must have a minimum if all Yukawa couplings
are real, so that W̃i = W ∗

i . This minimum is away from zero because at small values
of W, W̃ , the dominant quadratic term is negative. However, the contribution of the
η field can easily be included in the argument:

First of all, with the η field included, the function H is still real, because the terms
W0 and W̃0 only occur in terms with an even number of η fields.

Secondly, the terms quartic in W0 and W̃0 are still positive, because i4 = +1.
Next, the coefficients in W0, W̃0, do contribute to terms quadratic in these coef-

ficients that have the wrong sign, if there are non-chiral fermions. This implies that,
for large values of W0, we have no proof yet that solutions exist. There might be an
absolute minimum of H at W0 = 0. Perhaps this leaves an interesting intermediate
case with W0 extremely small, which may give perspectives for approaches towards
the hierarchy problem.

Finally then, we have to contemplate the scalar interactions. In (6.14), the gauge
and Yukawa couplings are now fixed by the previous derivations. It remains to deter-
mine whether or not a quartic function V (σ) exists that obeys the equation �V = 0.
There are as many equations as there are unknowns.
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Let us temporarily ignore the dependence on the η field and write (6.14) as

�V = �1 − �2 + �3 + �4 − �5 − �6, (7.5)

where the signs of the various terms are explicitly indicated (the sign in front of �6
is negative because the commutator there is antihermitean). Inspecting the equation
a bit more closely, we see that �V would become positive for large values of V ,
since then the first term, �1, dominates—although we have the same problems as
before concerning the η dependent terms. For small values of V the terms �3 −
�5 − �6 dominate. A solution is likely to exist if these add up to be negative, which
means that the Yukawa couplings must dominate over the gauge couplings in �3.
Including now the η field complicates matters, but if their contributions are not too
big, it seems likely that solutions to the equation �V = 0 can be found in many
cases. Thus, all coupling constants, mass terms and cosmological term will then be
uniquely, or nearly uniquely fixed, in the sense that there will be theories with one
solution, theories with two or more solutions, but also many theories with no fixed
point at all.

The values obtained for the physical parameters are quite general solutions of
the above non-linear equations, and there seems to be no reason why any of these
parameters should be excessively small compared to some others. We did investigate
in which case the cosmological constant will be zero or excessively small. One easily
derives [2] the equation

36�̃2 = 4�̃Tr(m2
d) + Tr(m4

d) − 1

4

∑
i

m4
i . (7.6)

The last two terms of this equation resemble a supertrace. Since the sign of the
l.h.s. must be positive, we read off right away that there must be fermions. If fur-
thermore we like to have a very small or vanishing cosmological constant �, we
clearly need that the sum of the fourth power of the Dirac masses (approximately)
equals the sum of the fourth powers of the masses of the real scalar particles divided
by 4.

If there were no scalar fields ϕi , (7.6) would have a solution, but, since the last
term would then be absent, the cosmological constant would come out fairly large.

It appears that in today’s particle models not only the cosmological constant �̃

but also the mass terms are quite small, in the units chosen, which are our modified
Planck units. Also, if there is a triple scalar coupling, V3(ϕ), it appears to be small
as well. This is the hierarchy problem, for which we cannot offer any solution other
than suggesting that we may have to choose a very complex group structure—as in
the landscape scenarios often proposed in superstring theories. Perhaps, the small
numbers in our present theory are all related.

If the masses are indeed all small, then the only large terms in our equations are
the ones that say how the coupling constants and masses run with scale. Our theory
suggests that they might stop running at some scale; in any case, a light Higgs particle
indeed follows from the demand that the Higgs self coupling is near an UV fixed
point.

Searches for more explicit models, including ones with small masses and cosmo-
logical constant, will be left for the future.
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8 Discussion

Our theory derives constraints from the fact that matter fields interact with gravity.
The basic assumption could be called a new version of relativity: the scalar matter
fields should not be fundamentally different from the dilaton field η(	x, t). Since there
are no singular interactions when a scalar field tends to zero, there is no reason to ex-
pect any singularity when η(	x, t) tends to zero at some point in space-time. Standard
gravity theory does have singularities there: this domain refers to the short distance
behavior of gravity, which is usually considered to be “not understood”. What if the
short distance behavior of gravity and matter fields is determined by simply demand-
ing the absence of a singularity? Matter and dilaton then join smoothly together in a
perfectly conformally invariant theory. This, however, only works if all β functions
of this theory vanish: its coupling parameters must be at a fixed point. There are only
discrete sets of such fixed points. Some theories have no fixed point at all in the do-
main where physical constants are real and positive—that is, stable. Searching for
non trivial fixed points will be an interesting and important exercise.

Our condition that local conformal invariance may not be broken explicitly but
only spontaneously implies that all physical parameters, including the cosmologi-
cal constant, will be fixed and calculable in terms of the Planck units. This may be
a blessing and a curse at the same time. It is a blessing because this removes all
dimensionless freely adjustable real numbers from our theory; everything is calcula-
ble, using techniques known today; there is a strictly discrete set of models, where the
only freedom we have is the choice of gauge groups and representations. It is difficult
to tell how many solutions there are; the number is probably denumerably infinite.

This result is also a curse, because the values these numbers have in the real world
is a strange mix indeed: the range of the absolute values cover some 122 orders of
magnitude:

�̃ = O(10−122); μ2
Higgs ≈ 3.10−36. (8.1)

The question where these various hierarchies of very large, or small, numbers come
from is a great mystery called the “hierarchy problem”. In our theory these hierar-
chies will be difficult to explain, but we do emphasize that the equations are highly
complex, and possibly theories with large gauge groups and representations have the
potential to generate such numbers.

Our theory is a “top-down” theory, meaning that it explains masses and couplings
at or near the Planck domain. It will be difficult to formulate any firm predictions
about physics at energies as low as the TeV domain. Perhaps we should expect large
regions on a logarithmic scale with an apparently unnatural scaling behavior. There
is in principle no supersymmetry, although the mathematics of supersymmetry will
be very helpful for constructing the first non-trivial models.

What is missing furthermore is an acceptable description of the dynamics of the
remaining parts ĝμν of the metric field. In [1], it was suggested that this dynamics
may be non quantum mechanical, although this does raise the question how ĝμν can
back react on the presence of quantum matter. Standard quantum mechanics possibly
does not apply to ĝμν because the notion of energy is absent in a conformal theory,
and consequently the use of a hamiltonian may become problematic. A hamiltonian
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can only be defined after coordinates and conformal factor have been chosen, while
this is something one might prefer not to do. The author believes that quantum me-
chanics itself may have to be carefully reformulated before we can really address this
problem.

Instead of keeping the coefficient in front of the conformal Weyl action infinite,
we could also settle for a value that is very large, say 1040, but not infinite. This
would reduce to zero all gravitational effects at mass and energy scales beyond 10−20

times the Planck mass, without modifying gravity as it is known today, while all
unitarity violations would stay well below the 10−40 level. This would imply that
gravity is screened at short distances, with wrong sign, low mass “anti”-gravitons;
we then have a theory that is only approximately unitary. All violations of unitarity
would only show up at the 40th decimal place, even at the Planck scale; in a pragmatic
world view one might be able to live with that.

Our theory indeed is complex. We found that the presence of non-Abelian Yang-
Mills fields, scalar fields and spinor fields is required, while U(1) gauge fields are
forbidden (at least at weak coupling, since the β function for the charges here is
known to be positive). Because of this, one “prediction” stands out: there will be
magnetic monopoles, although presumably their masses will be of the order of the
Planck mass.

Finally, there is one other firm prediction: the constants of nature will indeed be
truly constant. Attempts to experimentally observe variations in constants such as
the finestructure constant or the proton electron mass ratio, with time, or position in
distant galaxies, are predicted to yield negative results.

9 Conclusions

During the last decades, microscopic black holes were studied because they appeared
to cause conflicts in the conventional theory. Now, we tentatively conclude that this
study may finally be paying off. Our research was inspired by ideas launched re-
cently [3], where it was concluded that an effective theory of gravity should exist
in which the dilaton component either does not exist at all or is integrated out. This
would enable us to understand the black hole complementarity principle, and indeed,
make black holes effectively indistinguishable from ordinary matter at tiny scales.
A big advantage of such constructions would be that, due to the formal absence of
black holes, we would be allowed to limit ourselves to topologically trivial, contin-
uous spacetimes for a meaningful and accurate, nonperturbative description of all
interactions. This actually leads to a novel constraint on theories, so that we get pre-
dictions affecting the Standard Model itself: constants of nature are truly constant
and they are, in principle, calculable, although the latter does require that we know
exactly all fields and their symmetry algebras. These are denumerable, and they can
be guessed, perhaps.

Let us briefly summarize here how the present formulation can be used to resolve
the issue of an apparent clash between unitarity and locality in an evaporating black
hole. An observer going into the hole does not explicitly observe the Hawking par-
ticles going out. (S)he passes the event horizon at Schwarzschild time t → ∞, and
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from his/her point of view, the black hole at that time is still there. For the external
observer, however, the black hole has disappeared at t → ∞. Due to the back reac-
tion of the Hawking particles, energy (and possibly charge and angular momentum)
has been drained out of the hole. Thus, the two observers appear to disagree about
the total stress-energy-momentum tensor carried by the Hawking radiation. Now this
stress-energy-momentum tensor was constructed in such a way that it had to be co-
variant under coordinate transformations, but this covariance only applies to changes
made in the stress-energy-momentum when creation- and/or annihilation operators
act on it. About these covariant changes, the two observers do not disagree. It is
the background subtraction that is different, because the two observers do not agree
about the vacuum state. This shift in the background’s source of gravity can be neatly
accommodated for by a change in the conformal factor ω(x) in the metric seen by
the two observers.

This we see particularly clearly in Rindler space. Here, we can generate a mod-
ification of the background stress-energy-momentum by postulating an infinitesimal
shift of the parameter λ(x) in (A.7) and (B.8). It implies a shift in the Einstein tensor
Gμν (and thus in the tensor Tμν ) of the form (A.8) (see Appendix A).

If now the transformation λ is chosen to depend only on the lightcone coordi-
nate x−, then

G−− → G−− − ∂2−λ, (9.1)

while the other components do not shift. Thus we see how a modification only in the
energy and momentum of the vacuum in the x+ direction (obtained by integrating
G−− over x−) is realized by a scale modification λ(x−).

In a black hole, we choose to modify the pure Schwarzschild metric, as experi-
enced by an ingoing observer, by multiplying the entire metric with a function ω2(t)

that decreases very slowly from 1 to 0 as Schwarzschild time t runs to infinity. This
then gives the metric of a gradually shrinking black hole as seen by the distant ob-
server. Where ω has a non vanishing time derivative, this metric generates a non van-
ishing Einstein tensor, hence a non vanishing background stress-energy-momentum.
This is the stress-energy-momentum of the Hawking particles.

Calculating this stress-energy-momentum yields an apparently disturbing surprise:
it does not vanish at spacelike infinity. The reason for this has not yet completely been
worked out, but presumably lies in the fact that the two observers not only disagree
about the particles emerging from the black hole, but also about the particles entering
the black hole, and indeed an infinite cloud of thermal radiation filling the entire
universe around it.

All of this is a sufficient reason to suspect that the conformal (dilaton) factor ω(x)

must be declared to be locally unobservable. It is fixed only if we know the global
spacetime and after choosing our coordinate frame, with its associated vacuum state.
If we would not specify that state, we would not have a specified ω. In ‘ordinary’
physics, quantum fields are usually described in a flat background. Then the choice
for ω is unique. Curiously, it immediately fixes for us the sizes, masses and lifetimes
of all elementary particles. This may sound mysterious, until we realize that sizes and
lifetimes are measured by using light rays, and then it is always assumed that these
light rays move in a flat background. When this background is not flat, because ĝμν
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is non-trivial, then sizes and time stretches become ambiguous. We now believe that
this ambiguity is a very deep and fundamental one in physics.

Although this could in principle lead to a beautiful theory, we do hit a real obsta-
cle, which is, of course, that gravity is not renormalizable. This ‘disease’ still plagues
our present approach, unless we turn to rather drastic assumptions. The usual idea
that one should just add renormalization counter terms wherever needed, is found
to be objectionable. So, we turn to ideas related to the ‘primitive quantization’ pro-
posal of [43]. Indeed, this quantization procedure assumes a basically classical set of
equations of motion as a starting point, so the idea would fit beautifully.

We were led to the class of models defined by the condition that local conformal
symmetry is an exact symmetry that is spontaneously broken. Therefore, in the sym-
metric phase, the β functions must all vanish. Valuable examples can be constructed
as follows.

Step 1. A gauge field algebra and the associated fermionic and scalar representations
are chosen in such a way that the coefficient(s) a in (6.2) is/are small. We
don’t know the sign yet, so try both possibilities.

Step 2. Write the Yukawa terms as matrices Wi, W̃i that, at lowest order, are propor-
tional to the gauge coupling constant(s) g. Find these coefficients by extrem-
izing H in (7.2).

Step 3. This enables us to compute the coefficients bi in (6.3). Check whether a/b is
negative and small. If not, try another algebra, going back to Step 1.

Step 4. Find a solution of the equation �V = 0, (6.14), (7.5).
Step 5. Check the resulting masses and the cosmological constant. In physically re-

alistic models these should be very small. At this stage of our understanding,
there seems to be no reason for these to be small, so we expect only to achieve
toy models, but hopefully more can be learnt by studying many examples.

Of course, many other questions are left unanswered. This is also why we call our
result “a class of models”. It is obviously important to have models without freely
adjustable parameters. Our models are to be constructed using the guideline that dif-
ficulties with exact local conformal invariance have to be addressed. However, quite
conceivably, further research might turn up more alternative options for a cure to
these difficulties. One of these, of course, is superstring theory. Superstring theory
often leads one to avoid certain questions to be asked at all, but eventually the black
hole complementarity principle will have to be considered, just as the question of the
structure of Nature’s degrees of freedom at distance and energy scales beyond the
Planck scale.
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Appendix A: Local Scale Invariance and the Weyl Curvature

Consider an effective theory with not only general covariance,

ĝμν → ĝμν + D̂μuν + D̂νuμ, (A.1)

where uμ(x) are the generators of infinitesimal coordinate transformations, and D̂μ is
the covariant derivative with respect to ĝμν ; but now we also have a new kind of gauge
invariance, being local scale invariance, which we write in infinitesimal notation, for
convenience:

ĝμν → ĝμν + λ(x)ĝμν, (A.2)

and we demand invariance under that as well. Note that this transformation is quite
distinct from scale transformations in the coordinate frame, which of course belongs
to the coordinate transformations (A.1) and as such is always an invariance of the
usual theory. In short, we now have a theory with a 5 dimensional local gauge group.
Theories of this sort have been studied in detail [12–18].

The Riemann tensor R̂α
βμν transforms as a decent tensor under the coordinate

transformations (A.1), but it is not invariant (or even covariant) under the local con-
formal transformation (A.2). Now, in four space time dimensions, we can split up
the 20 independent components of the Riemann tensor into the 10 component Ricci
tensor

R̂μν = R̂α
μαν, (A.3)

and the components orthogonal to that, called the Weyl tensor,

Ŵμναβ = R̂μναβ + 1

2
(−gμαR̂νβ + gμβR̂να + gναR̂μβ − gνβR̂μα)

+ 1

6
(gμαgνβ − gναgμβ)R̂, (A.4)

which is constructed in such a way that all its traces vanish, Ŵ
μ
αμβ = 0, and therefore

has the just the remaining 10 independent components.
The transformation rules under coordinate transformations (A.1) are as usual; all

these curvature fields transform as tensors. To see how they transform under (A.2),
first note how the connection fields transform:

�̂αμν → (1 + λ)�̂αμν + 1

2
(ĝαν∂μλ + ĝαμ∂νλ − ĝμν∂αλ) + O(λ2), (A.5)

from which one derives

R̂αβμν → (1 + λ)R̂αβμν + 1

2
(ĝανD̂β∂μλ − ĝαμD̂β∂νλ − ĝβνD̂α∂μλ + ĝβμD̂α∂νλ).

(A.6)
From this we find how the Ricci tensor transforms:

R̂μν → R̂μν − D̂μ∂νλ − 1

2
ĝμνD̂

2λ, R̂ → R̂(1 − λ) − 3D̂2λ. (A.7)
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The Einstein tensor Gμν transforms as

Gμν → Gμν − Dμ∂νλ + gμνD
2λ, (A.8)

which implies that the matter content of space-time is not invariant under local con-
formal transformations.

The Weyl tensor (A.4), being the traceless part, is easily found to be invariant
(apart from the canonical term):

Ŵαβμν → (1 + λ)Ŵαβμν. (A.9)

Since the inverse, ĝμν , and the determinant, ĝ, of the metric transform as

ĝμν → (1 − λ)ĝμν; ĝ → (1 + 4λ)ĝ, (A.10)

we establish that exactly the Weyl tensor squared yields an action that is totally in-
variant under local scale transformations in four space-time dimensions (remember
that ĝμν is used to connect the indices):

L = C
√

−ĝŴαβμνŴ
αβμν = C

√
−ĝ

(
R̂αβμνR̂

αβμν − 2R̂μνR̂
μν + 1

3
R̂2

)
, (A.11)

which, due to the fact that the integral of

R̂αβμνR̂
αβμν − 4R̂μνR̂

μν + R̂2 (A.12)

is a topological invariant, can be further reduced to

L = 2C
√

−ĝ

(
R̂2

μν − 1

3
R̂2

)
, (A.13)

to serve as a possible locally scale invariant Lagrangian.
The constant C may be any dimensionless parameter. Note that, according

to (A.7), neither the Ricci tensor nor the Ricci scalar are invariant; therefore, they
are locally unobservable at this stage of the theory. Clearly, in view of Einstein’s
equation, matter, and in particular its stress-energy-momentum tensor, are locally
unobservable in the same sense. This will have to be remedied at a later stage, where
we must work on redefining what matter is at scales much larger than the Planck
scale.

If we replace the number of space-time dimensions from 4 to n, we take

gμν = ω
4

n−2 ĝμν, (A.14)

and the expressions for the Weyl curvature become

Rμναβ = Wμναβ + 1

n − 2
(gμαRνβ − gμβRνα − gναRμβ + gνβRμα)

+ 1

(n − 2)(n − 1)
(−gμαgνβ + gναgμβ)R; (A.15)
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the conformal invariant effective lagrangian then reads

L = Cω
2(n−4)
n−2

√
−ĝŴαβμνŴ

αβμν. (A.16)

Appendix B: Conformal Field Equations

Here, we consider the field equations associated to the “lagrangian” (A.13). Consider
an infinitesimal variation hμν on the metric: ĝμν → ĝμν + δĝμν , δĝμν = hμν . The
infinitesimal changes of the Ricci tensor and scalar are

δR̂μν = 1

2
(D̂αD̂μhα

ν + D̂αD̂νh
α
μ − D2hμν − D̂μ∂νh

α
α); (B.1)

δR̂ = −hαβR̂αβ + D̂αD̂βhαβ − D̂2hα
α. (B.2)

Using the Bianchi identity

DμRμ
ν = 1

2
∂νR, (B.3)

the variation of the Weyl action (A.11), (A.13) is then found to be

δS = 2C

∫
dnx

√
−ĝhαβBαβ, with

Bαβ = −D̂2R̂αβ + 1

3
D̂αD̂βR̂ − 2R̂μνR̂αμβν + 2

3
R̂R̂αβ (B.4)

+ 1

2
gαβ

(
R̂μνR̂

μν − 1

3
R̂2 + 1

3
D̂2R̂

)
.

The classical equations of motion for the Ricci tensor as they follow from the Weyl
action are therefore that the Bach tensor vanishes [44]:

Bαβ = 0. (B.5)

Note that it is traceless: gαβBαβ ≡ 0. To see the most salient features of (B.5), let us
linearize in R̂α

βμν and ignore connection terms. We get

R̂μν − 1

6
R̂δμν

def= Sμν; ∂μSμν = ∂νSαα; ∂2Sμν − ∂μ∂νSαα = 0. (B.6)

Defining λ(x) by the equation

∂2λ
def= −Sαα, (B.7)

we find that the solution Sμν of (B.6) can be written as

Sμν = −∂μ∂νλ + Aμν, with ∂2Aμν = 0, Aαα = 0, ∂μAμν = 0. (B.8)

From (A.7) we notice that the free function λ(x) corresponds to the local scale de-
gree of freedom (A.2), while the equation for the remainder, Aμν , tells us that the
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Einstein tensor, after the scale transformation λ(x), can always be made to obey the
d’Alembert equation ∂2Gμν = 0, which is basically the field equation for the stress-
energy-momentum tensor that corresponds to massless particles.13 Thus, it is not true
that the Weyl action gives equations that are equivalent to Einstein’s equations, but
rather that they lead to Einstein equations with only massless matter as their source.
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