8 research outputs found

    The rapidly pulsating sdO star, SDSS J160043.6+074802.9

    Full text link
    A spectroscopic analysis of SDSS J160043.6+074802.9, a binary system containing a pulsating subdwarf-O (sdO) star with a late-type companion, yields Teff = 70 000 +/- 5000 K and log g = 5.25 +/- 0.30, together with a most likely type of K3V for the secondary star. We compare our results with atmospheric parameters derived by Fontaine et al. (2008) and in the context of existing evolution models for sdO stars. New and more extensive photometry is also presented which recovers most, but not all, frequencies found in an earlier paper. It therefore seems probable that some pulsation modes have variable amplitudes. A non-adiabatic pulsation analysis of uniform metallicity sdO models show those having log g > 5.3 to be more likely to be unstable and capable of driving pulsation in the observed frequency range.Comment: 14 pages, 12 figures, accepted for publication in MNRAS, 2009 September

    A radio-pulsing white dwarf binary star

    Get PDF
    White dwarfs are compact stars, similar in size to Earth but ~200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions, and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf / cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a delta-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56 hr period close binary, pulsing in brightness on a period of 1.97 min. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 s, and they are detectable at radio frequencies, the first such detection for any white dwarf system. They reflect the spin of a magnetic white dwarf which we find to be slowing down on a 10^7 yr timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they originate in large part from the cool star. AR Sco's broad-band spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere

    The Peculiar Binary System AE Aquarii from its Characteristic Multi-wavelength Emission

    No full text
    The multi-wavelength properties of the novalike variable system AE Aquarii are discussed in terms of the interaction between the accretion inflow from a late-type main sequence star and the magnetosphere of a fast rotating white dwarf. This results in an efficient magnetospheric propeller process and particle acceleration. The spin-down of the white dwarf at a period rate of 5.64×10−14 s s−1 results in a huge spin-down luminosity of Ls−d ≃ 6 10×33 erg s−1. Hence, the observed non-thermal hard X-ray emission and VHE and TeV gamma-ray emission may suggest that AE Aquarii can be placed in the category of spin-powered pulsars. Besides, observed hard X-ray luminosity of LX,hard ≀ 5 × 1030 erg s−1 constitutes 0.1 % of the total spin-down luminosity of the white dwarf. This paper will discuss some recent theoretical studies and data analysis of the system

    Accreting Pulsars: Mixing-up Accretion Phases in Transitional Systems

    Get PDF
    In the last 20 years our understanding of the millisecond pulsar (MSP) population changed dramatically. Thanks to RXTE, we discovered that neutron stars in LMXBs spins at 200-750 Hz frequencies, and indirectly confirmed the recycling scenario, according to which neutron stars are spun up to ms periods during the LMXB-phase. In the meantime, the continuous discovery of rotation-powered MSPs in binary systems in the radio and gamma-ray band (mainly with the Fermi LAT) allowed us to classify these sources into two "spiders" populations, depending on the mass of their companion stars: Black Widow, with very low-mass companion stars, and Redbacks, with larger companions possibly filling their Roche lobes but without accretion. It was soon regained that MSPs in short orbital period LMXBs are the progenitors of the spider populations of rotation-powered MSPs, although a direct link between accretion- and rotation-powered MSPs was still missing. In 2013 XMM-Newton spotted the X-ray outburst of a new accreting MSP (IGR J18245-2452) in a source that was previously classified as a radio MSP. Follow up observations of the source when it went back to X-ray quiescence showed that it was able to swing between accretion- to rotation-powered pulsations in a relatively short timescale (few days), promoting this source as the direct link between the LMXB and the radio MSP phases. Following discoveries showed that there exists a bunch of sources, which alternates X-ray activity phases, showing X-ray pulsations, to radio-loud phases, showing radio pulsations, establishing a new class of MSPs: the Transitional MSP. In this review we describe these exciting discoveries and the properties of accreting and transitional MSPs, highlighting what we know and what we have still to learn about in order to fully understand the (sometime puzzling) behavior of these systems and their evolutive connection (abridged)

    Paving the way to simultaneous multi-wavelength astronomy

    Get PDF
    Whilst astronomy as a science is historically founded on observations at optical wavelengths, studying the Universe in other bands has yielded remarkable discoveries, from pulsars in the radio, signatures of the Big Bang at submm wavelengths, through to high energy emission from accreting, gravitationally-compact objects and the discovery of gamma-ray bursts. Unsurprisingly, the result of combining multiple wavebands leads to an enormous increase in diagnostic power, but powerful insights can be lost when the sources studied vary on timescales shorter than the temporal separation between observations in different bands. In July 2015, the workshop "Paving the way to simultaneous multi-wavelength astronomy" was held as a concerted effort to address this at the Lorentz Center, Leiden. It was attended by 50 astronomers from diverse fields as well as the directors and staff of observatories and spaced-based missions. This community white paper has been written with the goal of disseminating the findings of that workshop by providing a concise review of the field of multi-wavelength astronomy covering a wide range of important source classes, the problems associated with their study and the solutions we believe need to be implemented for the future of observational astronomy. We hope that this paper will both stimulate further discussion and raise overall awareness within the community of the issues faced in a developing, important field
    corecore