988 research outputs found

    Scattering of gravitational radiation. Intensity fluctuations

    Get PDF
    Aims. The effect of gravitational microlensing on the intensity of gravitational radiation as it propagates through an inhomogeneous medium is considered. Lensing by both stars and a power law spectrum of density perturbations is examined. Methods. The long wavelengths characteristic of gravitational radiation mandate a statistical, physical-optics approach to treat the effect of the lensing. Results. A model for the mass power spectrum of a starfield, including the effects of clustering and allowing for a distribution of stellar masses, is constructed and used to determine both the amplitude of fluctuations in the gravitational wave strain and its associated temporal fluctuation spectrum. For a uniformly distributed starfield the intensity variance scales linearly with stellar density, σ, but is enhanced by a factor ≳σr^2_F when clustering is important, where r_F is the Fresnel scale. The effect of lensing by a power law mass spectrum, applicable to lensing by small scale fluctuations in gas and dark matter, is also considered. For power law mass density spectra with indices steeper than −2 the wave amplitude exhibits rms fluctuations 1.3^(1/4)(D_(eff)/1 Gpc)^(1/2)%, where is the variance in the mass surface density measured in M^2_⊙ pc^(−4) and D_(eff) is the effective distance to the lensing medium. For shallower spectra the amplitude of the fluctuations depends additionally on the inner length scale and power law index of the density fluctuations. The intensity fluctuations are dominated by temporal fluctuations on long timescales. For lensing material moving at a speed v across the line of sight the fluctuation timescale exceeds v^(−1)(D_(eff)λ)^(1/2). Lensing by small scale structure induces at most ≈15% rms variations if the line of sight to a gravitational wave source intersects a region with densities ~100 M_⊙ pc^(−2), which are typically encountered in the vicinity of galaxy clusters

    Emergence and disappearance of micro-arcsecond structure in the scintillating quasar J1819+3845

    Get PDF
    The 4.8 GHz lightcurves of the scintillating intra-day variable quasar J1819+3845 during 2004-5 exhibit sharp structure, down to a time scale of 15 minutes, that was absent from lightcurves taken prior to this period and from the 2006 lightcurves. Analysis of the lightcurve power spectra show that the variations must be due to the emergence of new structure in the source. The power spectra yield a scattering screen distance of 3.8 +/- 0.3 pc for a best-fit v_ISS=59 +/- 0.5 km/s or 2.0 +/- 0.3 pc for the scintillation velocity reported by Dennett-Thorpe & de Bruyn (2003). The turbulence is required to be exceptionally turbulent, with C_N^2 > 0.7 Delta L_pc^{-1} m^{-20/3} for scattering material of thickness Delta L_{pc} pc along the ray path. The 2004 power spectrum can be explained in terms of a double source with a component separation 240 +/- 15 microas in 2004.Comment: MNRAS Lett (accepted), version with high-resolution figures at http://www.astro.caltech.edu/~jpm/MdB1819.pd

    Optimization of survey strategies for detecting slow radio transients

    Get PDF
    We investigate the optimal tradeoff between sensitivity and field of view in surveys for slow radio transients using the event detection rate as the survey metric. This tradeoff bears implications for the design of surveys conducted with upcoming widefield radio interferometers, such as the ASKAP VAST survey and the MeerKAT TRAPUM survey. We investigate (i) a survey in which the events are distributed homogeneously throughout a volume centred on the Earth, (ii) a survey in which the events are homogeneously distributed, but are only detectable beyond a certain minimum distance, and (iii) a survey in which all the events occur at an identical distance, as is appropriate for a targetted survey of a particular field which subtends Npoint telescope pointings. For a survey of fixed duration, Tobs, we determine the optimal tradeoff between number of telescope pointings, N, and integration time per field. We consider a population in which the event luminosity distribution follows a power law with index − α, and tslew is the slewing time between fields or, for a drift scan, the time taken for the telescope drift by one beamwidth. Several orders of magnitude improvement in detection rate is possible by optimization of the survey parameters. The optimal value of N for case (i) is Nmax ~ Tobs/4tslew, while for case (iii) we find Nmax = (Lmax/L0)2[(3 − α)/2]2/(α − 1), where Lmax is the maximum luminosity of a transient event and L0 is the minimum luminosity event detectable in an integration of duration Tobs. (The instance Nmax > Npoint in (iii) implies re-observation of fields over the survey area, except when the duration of transient events exceeds that between re-observations of the same field, where Nmax = Npoint applies instead.) We consider the balance in survey optimization between telescope field of view, Ω, and sensitivity, characterised by the minimum detectable flux density, S0. For homogeneously distributed events (i), the detection rate scales as NΩS−3/20, while for targetted events (iii) it scales as NΩS1 − α0. However, if the targetted survey is optimised for N the event detection rate scales instead as ΩS−20. This analysis bears implications for the assessment of telescope designs: the quantity ΩS−20 is often used as the metric of telescope performance in the SKA transients literature, but only under special circumstances is it the metric that optimises the event detection rate

    OPTIBLESS:An Open-source Toolbox for the Optimisation of Blended Stacking Sequence

    Get PDF
    A free open-source toolbox for the Optimisation of BLEnded Stacking Sequences (OptiBLESS) is presented in this paper. Despite the increasing use of composite materials over the last decades, opti-misation tools for composite structures and stacking sequences remain scarce. While a few proprietary and private software are available for this purpose, there are none in the open source domain where their impact could be greatest. The aim of the developed toolbox presented herein is to provide an accessible and easy-to-use tool for the optimisation of blended stacking sequences. The toolbox capabilities and methodology are addressed in the first part of this paper before being applied to the optimisation of a composite aircraft wing. Results successfully demonstrate the toolbox functionality and performance. The OptiBLESS toolbox is released under a BSD 2-clause license allowing redistribution and use in source and binary forms, with or without modifications. The toolbox, including a user manual and working examples, can be downloaded directly from its GitHub repository: https://github.com/TMacquart/OptiBLESS

    Intra-Day Variability and the Interstellar Medium Towards 0917+624

    Get PDF
    The intra-day variable source 0917+624 displays annual changes in its timescale of variability. This is explained in terms of a scintillation model in which changes in the variability timescale are due to changes in the relative velocity of the scintillation pattern as the Earth orbits the sun. (see also astro-ph/0102050)Comment: 4 pages, 1 figure. Accepted for A&A Letter

    Rapidly Evolving Circularly Polarized Emission during the 1994 Outburst of GRO J1665-40

    Get PDF
    We report the detection of circular polarization during the 1994 outburst of the Galactic microquasar GRO J1655-40. The circular polarization is clearly detected at 1.4 and 2.4GHz, but not at 4.8 and 8.4GHz, where its magnitude never exceeds 5 mJy. Both the sign and magnitude of the circular polarization evolve during the outburst. The time dependence and magnitude of the polarized emission can be qualitatively explained by a model based on synchrotron emission from the outbursts, but is most consistent with circular polarization arising from propagation effects through the relativistic plasma surrounding the object.Comment: 8 pages, 3 figs., A&A accepte

    All Transients, All the Time: Real-Time Radio Transient Detection with Interferometric Closure Quantities

    Full text link
    We demonstrate a new technique for detecting radio transients based on interferometric closure quantities. The technique uses the bispectrum, the product of visibilities around a closed-loop of baselines of an interferometer. The bispectrum is calibration independent, resistant to interference, and computationally efficient, so it can be built into correlators for real-time transient detection. Our technique could find celestial transients anywhere in the field of view and localize them to arcsecond precision. At the Karl G. Jansky Very Large Array (VLA), such a system would have a high survey speed and a 5-sigma sensitivity of 38 mJy on 10 ms timescales with 1 GHz of bandwidth. The ability to localize dispersed millisecond pulses to arcsecond precision in large volumes of interferometer data has several unique science applications. Localizing individual pulses from Galactic pulsars will help find X-ray counterparts that define their physical properties, while finding host galaxies of extragalactic transients will measure the electron density of the intergalactic medium with a single dispersed pulse. Exoplanets and active stars have distinct millisecond variability that can be used to identify them and probe their magnetospheres. We use millisecond time scale visibilities from the Allen Telescope Array (ATA) and VLA to show that the bispectrum can detect dispersed pulses and reject local interference. The computational and data efficiency of the bispectrum will help find transients on a range of time scales with next-generation radio interferometers.Comment: Accepted to ApJ. 8 pages, 5 figures, 2 tables. Revised to include discussion of non-Gaussian statistics of techniqu

    Charting the transient universe using radio continuum surveys

    Get PDF
    The field of radio transients is exploding with the discovery of diverse new phenomena fuelled by recent advances in telescope and computational capabilities. The desire to maximise time on sky to detect ever more and rarer events drives us to share telescope time with large continuum surveys. We discuss here the advantages of a symbiotic relationship between transients and continuum surveys, and show how an understanding of the time domain can constitute an important facet of continuum survey data with regard to quality control, the interpretation of flux density and spectral information, and the origin of the radio emission. One example at centimetre wavelengths is the presence of intra-day variability, which sifts for the presence of 1-100µas structure and potentially serves as a discriminant of AGN and starburst-related radio emission. We identify and discuss four main issues for the successful integration of transients and continuum surveys
    • …
    corecore