11 research outputs found

    Return to the sea, get huge, beat cancer : An analysis of Cetacean genomes including an assembly for the humpback whale (Megaptera novaeangliae)

    No full text
    Cetaceans are a clade of highly specialized aquatic mammals that include the largest animals that have ever lived. The largest whales can have ∼1,000× more cells than a human, with long lifespans, leaving them theoretically susceptible to cancer. However, large-bodied and long-lived animals do not suffer higher risks of cancer mortality than humans - an observation known as Peto's Paradox. To investigate the genomic bases of gigantism and other cetacean adaptations, we generated a de novo genome assembly for the humpback whale (Megaptera novaeangliae) and incorporated the genomes of ten cetacean species in a comparative analysis. We found further evidence that rorquals (family Balaenopteridae) radiated during the Miocene or earlier, and inferred that perturbations in abundance and/or the interocean connectivity of North Atlantic humpback whale populations likely occurred throughout the Pleistocene. Our comparative genomic results suggest that the evolution of cetacean gigantism was accompanied by strong selection on pathways that are directly linked to cancer. Large segmental duplications in whale genomes contained genes controlling the apoptotic pathway, and genes inferred to be under accelerated evolution and positive selection in cetaceans were enriched for biological processes such as cell cycle checkpoint, cell signaling, and proliferation. We also inferred positive selection on genes controlling the mammalian appendicular and cranial skeletal elements in the cetacean lineage, which are relevant to extensive anatomical changes during cetacean evolution. Genomic analyses shed light on the molecular mechanisms underlying cetacean traits, including gigantism, and will contribute to the development of future targets for human cancer therapies

    Return to the sea, get huge, beat cancer: an analysis of cetacean genomes including an asssembly for the humpback whale (megaptera novaeangliae)

    No full text
    Cetaceans are a clade of highly specialized aquatic mammals that include the largest animals that have ever lived. The largest whales can have ∼1,000× more cells than a human, with long lifespans, leaving them theoretically susceptible to cancer. However, large-bodied and long-lived animals do not suffer higher risks of cancer mortality than humans-an observation known as Peto's Paradox. To investigate the genomic bases of gigantism and other cetacean adaptations, we generated a de novo genome assembly for the humpback whale (Megaptera novaeangliae) and incorporated the genomes of ten cetacean species in a comparative analysis. We found further evidence that rorquals (family Balaenopteridae) radiated during the Miocene or earlier, and inferred that perturbations in abundance and/or the interocean connectivity of North Atlantic humpback whale populations likely occurred throughout the Pleistocene. Our comparative genomic results suggest that the evolution of cetacean gigantism was accompanied by strong selection on pathways that are directly linked to cancer. Large segmental duplications in whale genomes contained genes controlling the apoptotic pathway, and genes inferred to be under accelerated evolution and positive selection in cetaceans were enriched for biological processes such as cell cycle checkpoint, cell signaling, and proliferation. We also inferred positive selection on genes controlling the mammalian appendicular and cranial skeletal elements in the cetacean lineage, which are relevant to extensive anatomical changes during cetacean evolution. Genomic analyses shed light on the molecular mechanisms underlying cetacean traits, including gigantism, and will contribute to the development of future targets for human cancer therapies

    Size delays female senescence in a medium sized marsupial: the effects of maternal traits on annual fecundity in the northern brown bandicoot (Isoodon macrourus)

    No full text
    The degree to which females allocate resources between current reproduction, future fecundity and survival is a central theme in life history theory. We investigated two hypotheses proposed to explain patterns of reproductive investment, terminal investment and senescence, by examining the effects of maternal traits (age and maternal mass) on annual fecundity in female northern brown bandicoots, Isoodon macrourus (Marsupialia: Peramelidae). We found that annual fecundity in females declined in their final year of reproduction, indicating reproductive senescence. Maternal mass significantly influenced the rate of senescence and, in turn, a female's lifetime reproductive output. Mass had little effect on fecundity in 1st and 2nd year females, but a positive relationship with fecundity in 3rd year females. This meant that heavy, 3rd year females did not suffer the decline in fecundity shown in light 3rd year females. For 1st year females, mass and leg length increased between their first and second reproductive seasons, indicating a temporary shift, from the allocation of resources to reproduction, to increasing condition or structural size post their first breeding event. There were no net changes to body mass in subsequent years. We suggest that this year of post-reproductive growth has important consequences for senescent effects on reproduction. Overall, results provided support for the effects of senescence on annual fecundity. Our findings were not consistent with the terminal investment hypothesis; reproductive output did not increase in females' final reproductive season despite a rapid decline in survival. However, this notion cannot be entirely dismissed; other measures of reproductive performance not examined here (e.g. offspring mass) may have provided an indication that females did increase their effort at the end of their lifespan. This study highlights the difficulty of measuring reproductive costs and the importance of understanding the combined effects of specific characteristics of an individual when interpreting reproductive strategies in iteroparous organisms

    Return to the sea, get huge, beat cancer: an analysis of cetacean genomes including an assembly for the humpback whale (Megaptera novaeangliae)

    Get PDF
    Cetaceans are a clade of highly specialized aquatic mammals that include the largest animals that have ever lived. The largest whales can have 1,000 more cells than a human, with long lifespans, leaving them theoretically susceptible to cancer. However, large-bodied and long-lived animals do not suffer higher risks of cancer mortality than humans—an observation known as Peto’s Paradox. To investigate the genomic bases of gigantism and other cetacean adaptations, we generated a de novo genome assembly for the humpback whale (Megaptera novaeangliae) and incorporated the genomes of ten cetacean species in a comparative analysis. We found further evidence that rorquals (family Balaenopteridae) radiated during the Miocene or earlier, and inferred that perturbations in abundance and/or the interocean connectivity of North Atlantic humpback whale populations likely occurred throughout the Pleistocene. Our comparative genomic results suggest that the evolution of cetacean gigantism was accompanied by strong selection on pathways that are directly linked to cancer. Large segmental duplications in whale genomes contained genes controlling the apoptotic pathway, and genes inferred to be under accelerated evolution and positive selection in cetaceans were enriched for biological processes such as cell cycle checkpoint, cell signaling, and proliferation. We also inferred positive selection on genes controlling the mammalian appendicular and cranial skeletal elements in the cetacean lineage, which are relevant to extensive anatomical changes during cetacean evolution. Genomic analyses shed light on the molecular mechanisms underlying cetacean traits, including gigantism, and will contribute to the development of future targets for human cancer therapies
    corecore