35 research outputs found

    Ethnic and sex differences in the incidence of hospitalized acute myocardial infarction: British Columbia, Canada 1995-2002

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As populations in Western countries continue to change in their ethnic composition, there is a need for regular surveillance of diseases that have previously shown some health disparities. Earlier data have already demonstrated high rates of cardiovascular mortality among South Asians and relatively lower rates among people of Chinese descent. The aim of this study was to describe the differences in the incidence of hospitalized acute myocardial infarction (AMI) among the three largest ethnic groups in British Columbia (BC), Canada.</p> <p>Methods</p> <p>Using hospital administrative data, we identified all patients with incident AMI in BC between April 1, 1995, and March 31, 2002. Census data from 2001 provided the denominator for the entire BC population. Ethnicity was determined using validated surname analysis and applied to the census and hospital administrative datasets. Direct age standardization was used to compare incidence rates.</p> <p>Results</p> <p>A total of 34,848 AMI cases were identified. Among men, South Asians had the highest age standardized rate of AMI hospitalization at 4.97/1000 population/year, followed by Whites at 3.29, and then Chinese at 0.98. Young South Asian men, in particular, showed incidence rates that were double that of young Whites and ten times that of young Chinese men. South Asian women also had the highest age-standardized rate of AMI hospitalization at 2.35/1000 population/year, followed by White women (1.53) and Chinese women (0.49).</p> <p>Conclusions</p> <p>South Asians continue to have a higher incidence of hospitalized AMI while incidence rates among Chinese remain low. Ethnic differences are most notable among younger men.</p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore