44 research outputs found

    A survey of the European Open Science Cloud services for expanding the capacity and capabilities of multidisciplinary scientific applications

    Get PDF
    Open Science is a paradigm in which scientific data, procedures, tools and results are shared transparently and reused by society. The European Open Science Cloud (EOSC) initiative is an effort in Europe to provide an open, trusted, virtual and federated computing environment to execute scientific applications and store, share and reuse research data across borders and scientific disciplines. Additionally, scientific services are becoming increasingly data-intensive, not only in terms of computationally intensive tasks but also in terms of storage resources. To meet those resource demands, computing paradigms such as High-Performance Computing (HPC) and Cloud Computing are applied to e-science applications. However, adapting applications and services to these paradigms is a challenging task, commonly requiring a deep knowledge of the underlying technologies, which often constitutes a general barrier to its uptake by scientists. In this context, EOSC-Synergy, a collaborative project involving more than 20 institutions from eight European countries pooling their knowledge and experience to enhance EOSC’s capabilities and capacities, aims to bring EOSC closer to the scientific communities. This article provides a summary analysis of the adaptations made in the ten thematic services of EOSC-Synergy to embrace this paradigm. These services are grouped into four categories: Earth Observation, Environment, Biomedicine, and Astrophysics. The analysis will lead to the identification of commonalities, best practices and common requirements, regardless of the thematic area of the service. Experience gained from the thematic services can be transferred to new services for the adoption of the EOSC ecosystem framework. The article made several recommendations for the integration of thematic services in the EOSC ecosystem regarding Authentication and Authorization (federated regional or thematic solutions based on EduGAIN mainly), FAIR data and metadata preservation solutions (both at cataloguing and data preservation—such as EUDAT’s B2SHARE), cloud platform-agnostic resource management services (such as Infrastructure Manager) and workload management solutions.This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857647, EOSC-Synergy, European Open Science Cloud - Expanding Capacities by building Capabilities. Moreover, this work is partially funded by grant No 2015/24461-2, São Paulo Research Foundation (FAPESP). Francisco Brasileiro is a CNPq/Brazil researcher (grant 308027/2020-5).Peer Reviewed"Article signat per 20 autors/es: Amanda Calatrava, Hernán Asorey, Jan Astalos, Alberto Azevedo, Francesco Benincasa, Ignacio Blanquer, Martin Bobak, Francisco Brasileiro, Laia Codó, Laura del Cano, Borja Esteban, Meritxell Ferret, Josef Handl, Tobias Kerzenmacher, Valentin Kozlov, Aleš Křenek, Ricardo Martins, Manuel Pavesio, Antonio Juan Rubio-Montero, Juan Sánchez-Ferrero "Postprint (published version

    A survey of the European Open Science Cloud services for expanding the capacity and capabilities of multidisciplinary scientific applications

    Get PDF
    Open Science is a paradigm in which scientific data, procedures, tools and results are shared transparently and reused by society as a whole. The initiative known as the European Open Science Cloud (EOSC) is an effort in Europe to provide an open, trusted, virtual and federated computing environment to execute scientific applications, and to store, share and re-use research data across borders and scientific disciplines. Additionally, scientific services are becoming increasingly data-intensive, not only in terms of computationally intensive tasks but also in terms of storage resources. Computing paradigms such as High Performance Computing (HPC) and Cloud Computing are applied to e-science applications to meet these demands. However, adapting applications and services to these paradigms is not a trivial task, commonly requiring a deep knowledge of the underlying technologies, which often constitutes a barrier for its uptake by scientists in general. In this context, EOSC-SYNERGY, a collaborative project involving more than 20 institutions from eight European countries pooling their knowledge and experience to enhance EOSC\u27s capabilities and capacities, aims to bring EOSC closer to the scientific communities. This article provides a summary analysis of the adaptations made in the ten thematic services of EOSC-SYNERGY to embrace this paradigm. These services are grouped into four categories: Earth Observation, Environment, Biomedicine, and Astrophysics. The analysis will lead to the identification of commonalities, best practices and common requirements, regardless of the thematic area of the service. Experience gained from the thematic services could be transferred to new services for the adoption of the EOSC ecosystem framework

    A search for resonances decaying into a Higgs boson and a new particle X in the XH→qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (HH) and a new particle (XX) is reported, utilizing 36.1 fb1^{-1} of proton-proton collision data at s=\sqrt{s} = 13 TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle XX is assumed to decay to a pair of light quarks, and the fully hadronic final state XHqqˉbbˉXH \rightarrow q\bar q'b\bar b is analysed. The search considers the regime of high XHXH resonance masses, where the XX and HH bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XHXH mass versus XX mass is scanned for evidence of a signal, over a range of XHXH resonance mass values between 1 TeV and 4 TeV, and for XX particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XHXH and XX masses, on the production cross-section of the XHqqˉbbˉXH\rightarrow q\bar q'b\bar b resonance

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore