144 research outputs found

    Fast and Accurate Simulation Technique for Large Irregular Arrays

    Full text link
    A fast full-wave simulation technique is presented for the analysis of large irregular planar arrays of identical 3-D metallic antennas. The solution method relies on the Macro Basis Functions (MBF) approach and an interpolatory technique to compute the interactions between MBFs. The Harmonic-polynomial (HARP) model is established for the near-field interactions in a modified system of coordinates. For extremely large arrays made of complex antennas, two approaches assuming a limited radius of influence for mutual coupling are considered: one is based on a sparse-matrix LU decomposition and the other one on a tessellation of the array in the form of overlapping sub-arrays. The computation of all embedded element patterns is sped up with the help of the non-uniform FFT algorithm. Extensive validations are shown for arrays of log-periodic antennas envisaged for the low-frequency SKA (Square Kilometer Array) radio-telescope. The analysis of SKA stations with such a large number of elements has not been treated yet in the literature. Validations include comparison with results obtained with commercial software and with experiments. The proposed method is particularly well suited to array synthesis, in which several orders of magnitude can be saved in terms of computation time.Comment: The paper was submitted to IEEE Transaction on Antennas and Propagation on 01 - Feb.- 2017. The paper is 12 pages with 18 figure

    A cis-Acting Element in Retroviral Genomic RNA Links Gag-Pol Ribosomal Frameshifting to Selective Viral RNA Encapsidation

    Get PDF
    SummaryDuring retroviral RNA encapsidation, two full-length genomic (g) RNAs are selectively incorporated into assembling virions. Packaging involves a cis-acting packaging element (Ψ) within the 5′ untranslated region of unspliced HIV-1 RNA genome. However, the mechanism(s) that selects and limits gRNAs for packaging remains uncertain. Using a dual complementation system involving bipartite HIV-1 gRNA, we observed that gRNA packaging is additionally dependent on a cis-acting RNA element, the genomic RNA packaging enhancer (GRPE), found within the gag p1-p6 domain and overlapping the Gag-Pol ribosomal frameshift signal. Deleting or disrupting the two conserved GRPE stem loops diminished gRNA packaging and infectivity >50-fold, while deleting gag sequences between Ψ and GRPE had no effect. Downregulating the translation termination factor eRF1 produces defective virus particles containing 20 times more gRNA. Thus, only the HIV-1 RNAs employed for Gag-Pol translation may be specifically selected for encapsidation, possibly explaining the limitation of two gRNAs per virion

    Paternal mosaicism for a novel PBX1 mutation associated with recurrent perinatal death: Phenotypic expansion of the PBX1-related syndrome

    Get PDF
    First published:06 March 2020Autosomal dominant (de novo) mutations in PBX1 are known to cause congenital abnormalities of the kidney and urinary tract (CAKUT), with or without extra-renal abnormalities. Using trio exome sequencing, we identified a PBX1 p.(Arg107Trp) mutation in a deceased one-day-old neonate presenting with CAKUT, asplenia, and severe bilateral diaphragmatic thinning and eventration. Further investigation by droplet digital PCR revealed that the mutation had occurred post-zygotically in the father, with different variant allele frequencies of the mosaic PBX1 mutation in blood (10%) and sperm (20%). Interestingly, the father had subclinical hydronephrosis in childhood. With an expected recurrence risk of one in five, chorionic villus sampling and prenatal diagnosis for the PBX1 mutation identified recurrence in a subsequent pregnancy. The family opted to continue the pregnancy and the second affected sibling was stillborn at 35 weeks, presenting with similar severe bilateral diaphragmatic eventration, microsplenia, and complete sex reversal (46, XY female). This study highlights the importance of follow-up studies for presumed de novo and low-level mosaic variants and broadens the phenotypic spectrum of developmental abnormalities caused by PBX1 mutations.Tristan S.E. Hardy … Andreas W. Schreiber … Nick Manton, Lynette Moore … Christopher P. Barnett … Hamish S. Scott … et al

    Integrated multi-omics for rapid rare disease diagnosis on a national scale

    Get PDF
    Published online: 8 June 2023Critically ill infants and children with rare diseases need equitable access to rapid and accurate diagnosis to direct clinical management. Over 2 years, the Acute Care Genomics program provided whole-genome sequencing to 290 families whose critically ill infants and children were admitted to hospitals throughout Australia with suspected genetic conditions. The average time to result was 2.9 d and diagnostic yield was 47%. We performed additional bioinformatic analyses and transcriptome sequencing in all patients who remained undiagnosed. Long-read sequencing and functional assays, ranging from clinically accredited enzyme analysis to bespoke quantitative proteomics, were deployed in selected cases. This resulted in an additional 19 diagnoses and an overall diagnostic yield of 54%. Diagnostic variants ranged from structural chromosomal abnormalities through to an intronic retrotransposon, disrupting splicing. Critical care management changed in 120 diagnosed patients (77%). This included major impacts, such as informing precision treatments, surgical and transplant decisions and palliation, in 94 patients (60%). Our results provide preliminary evidence of the clinical utility of integrating multi-omic approaches into mainstream diagnostic practice to fully realize the potential of rare disease genomic testing in a timely manner.Sebastian Lunke ... Peer Arts ... Christopher P. Barnett ..., Chirag V. Patel ... Hamish S. Scott ... Karin S. Kassahn ... et al

    The therapeutic potential of epigenetic manipulation during infectious diseases.

    Get PDF
    Epigenetic modifications are increasingly recognized as playing an important role in the pathogenesis of infectious diseases. They represent a critical mechanism regulating transcriptional profiles in the immune system that contributes to the cell-type and stimulus specificity of the transcriptional response. Recent data highlight how epigenetic changes impact macrophage functional responses and polarization, influencing the innate immune system through macrophage tolerance and training. In this review we will explore how post-translational modifications of histone tails influence immune function to specific infectious diseases. We will describe how these may influence outcome, highlighting examples derived from responses to acute bacterial pathogens, models of sepsis, maintenance of viral latency and HIV infection. We will discuss how emerging classes of pharmacological agents, developed for use in oncology and other settings, have been applied to models of infectious diseases and their potential to modulate key aspects of the immune response to bacterial infection and HIV therapy

    Flavonoid and lignan intake in relation to bladder cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study

    Get PDF
    Item does not contain fulltextBACKGROUND: There is growing evidence of the protective role of dietary intake of flavonoids and lignans on cancer, but the association with bladder cancer has not been thoroughly investigated in epidemiological studies. We evaluated the association between dietary intakes of total and subclasses of flavonoids and lignans and risk of bladder cancer and its main morphological type, urothelial cell carcinoma (UCC), within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. METHODS: A cohort of 477 312 men and women mostly aged 35-70 years, were recruited in 10 European countries. At baseline, dietary flavonoid and lignan intakes were estimated using centre-specific validated questionnaires and a food composition database based on the Phenol-Explorer, the UK Food Standards Agency and the US Department of Agriculture databases. RESULTS: During an average of 11 years of follow-up, 1575 new cases of primary bladder cancer were identified, of which 1425 were UCC (classified into aggressive (n=430) and non-aggressive (n=413) UCC). No association was found between total flavonoid intake and bladder cancer risk. Among flavonoid subclasses, significant inverse associations with bladder cancer risk were found for intakes of flavonol (hazard ratio comparing fifth with first quintile (HRQ5-Q1) 0.74, 95% confidence interval (CI): 0.61-0.91; P-trend=0.009) and lignans (HRQ5-Q1 0.78, 95% CI: 0.62-0.96; P-trend=0.046). Similar results were observed for overall UCC and aggressive UCC, but not for non-aggressive UCC. CONCLUSIONS: Our study suggests an inverse association between the dietary intakes of flavonols and lignans and risk of bladder cancer, particularly aggressive UCC
    corecore