61 research outputs found

    Measurement of nuclear modification factors of gamma(1S)), gamma(2S), and gamma(3S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The cross sections for ϒ(1S), ϒ(2S), and ϒ(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at √sNN = 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, RAA, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, RAA(ϒ(1S)) > RAA(ϒ(2S)) > RAA(ϒ(3S)). The suppression of ϒ(1S) is larger than that seen at √sNN = 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the RAA of ϒ(3S) integrated over pT, rapidity and centrality is 0.096 at 95% confidence level, which is the strongest suppression observed for a quarkonium state in heavy ion collisions to date. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.Peer reviewe

    Azimuthal separation in nearly back-to-back jet topologies in inclusive 2-and 3-jet events in pp collisions at root s=13TeV

    Get PDF
    A measurement for inclusive 2- and 3-jet events of the azimuthal correlation between the two jets with the largest transverse momenta, Delta phi(12), is presented. The measurement considers events where the two leading jets are nearly collinear ("back-to-back") in the transverse plane and is performed for several ranges of the leading jet transverse momentum. Proton-proton collision data collected with the CMS experiment at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 35.9 fb(-1) are used. Predictions based on calculations using matrix elements at leading-order and next-to-leading-order accuracy in perturbative quantum chromodynamics supplemented with leading-log parton showers and hadronization are generally in agreement with themeasurements. Discrepancies between the measurement and theoretical predictions are as large as 15%, mainly in the region 177 degrees <Delta phi(12) <180 degrees. The 2- and 3-jet measurements are not simultaneously described by any of models.Peer reviewe

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Development and validation of HERWIG 7 tunes from CMS underlying-event measurements

    Get PDF
    This paper presents new sets of parameters (“tunes”) for the underlying-event model of the HERWIG7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in HERWIG7, and are obtained from a fit to minimum-bias data collected by the CMS experiment at s=0.9, 7, and 13Te. The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the dat

    Measurement of the top quark Yukawa coupling from t(t)over-bar kinematic distributions in the dilepton final state in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Combination of Organic‐Based Reservoir Computing and Spiking Neuromorphic Systems for a Robust and Efficient Pattern Classification

    No full text
    Nowadays, neuromorphic systems based on memristors are considered promising approaches to the hardware realization of artificial intelligence systems with efficient information processing. However, a major bottleneck in the physical implementation of these systems is the strong dependence of their performance on the unavoidable variations (cycle‐to‐cycle, c2c, or device‐to‐device, d2d) of memristive devices. Recently, reservoir computing (RC) and spiking neuromorphic systems (SNSs) are separately proposed as valuable options to partially mitigate this problem. Herein, both approaches are combined to create a fully organic system based on 1) volatile polyaniline memristive devices for the reservoir layer and 2) nonvolatile parylene memristors for the SNS readout layer. This combination provides a simpler SNS training procedure compared with the formal neural networks and results in greater robustness to device variability, while ensuring the extraction and encoding of the input critical features (performed by the polyaniline reservoir) and the analysis and classification performed by the SNS layer. Furthermore, the spatiotemporal pattern recognition of the system brings us closer to the implementation of efficient and reliable brain‐inspired computing systems built with partially unreliable analog elements

    <i>In Vivo</i> Proton–Electron Double-Resonance Imaging of Extracellular Tumor pH Using an Advanced Nitroxide Probe

    No full text
    A variable radio frequency proton–electron double-resonance imaging (VRF PEDRI) approach for pH mapping of aqueous samples has been recently developed (Efimova et al. J. Magn. Reson. 2011, 209, 227−232). A pH map is extracted from two PEDRI acquisitions performed at electron paramagnetic resonance (EPR) frequencies of protonated and unprotonated forms of a pH-sensitive probe. To translate VRF PEDRI to an <i>in vivo</i> setting, an advanced pH probe was synthesized. Probe deuteration resulted in a narrow spectral line of 1.2 G compared to a nondeuterated analogue line width of 2.1 G allowing for an increase of Overhauser enhancements and reduction in rf power deposition. Binding of the probe to the cell-impermeable tripeptide, glutathione (GSH), allows for targeting to extracellular tissue space for monitoring extracellular tumor acidosis, a prognostic factor in tumor pathophysiology. The probe demonstrated pH sensitivity in the 5.8–7.8 range, optimum for measurement of acidic extracellular tumor pH (pH<sub>e</sub>). <i>In vivo</i> VRF PEDRI was performed on Met-1 tumor-bearing mice. Compared to normal mammary glands with a neutral mean pH<sub>e</sub> (7.1 ± 0.1), we observed broader pH distribution with acidic mean pH<sub>e</sub> (6.8 ± 0.1) in tumor tissue. In summary, VRF PEDRI in combination with a newly developed pH probe provides an analytical approach for spatially resolved noninvasive pH<sub>e</sub> monitoring, <i>in vivo</i>

    Measurement of charged particle spectra in minimum-bias events from proton-proton collisions at root s =13 TeV

    Get PDF
    Pseudorapidity, transverse momentum, and multiplicity distributions are measured in the pseudorapidity range vertical bar eta vertical bar 0.5 GeV in proton-proton collisions at a center-of-mass energy of root s = 13 TeV. Measurements are presented in three different event categories. The most inclusive of the categories corresponds to an inelastic pp data set, while the other two categories are exclusive subsets of the inelastic sample that are either enhanced or depleted in single diffractive dissociation events. The measurements are compared to predictions from Monte Carlo event generators used to describe high-energy hadronic interactions in collider and cosmic-ray physics.Peer reviewe

    Measurements of differential Z boson production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore