1,094 research outputs found
Experimental evidence of reduced sticking of nanoparticles on a metal grid
Filtering of NaCl, CaCl2, (NH4)2SO4 and NiSO4 aerosol particles 7–20 nm in diameter by a stainless steel grid was studied in order to find out if there is perfect sticking or partial rebound. Our experiment used particles from a spray-drying process, the majority of which were electrically neutral. Penetration through the grid was measured by comparing the concentration downstream of the grid with the upstream concentration under otherwise identical conditions. Size selection was done with a scanning mobility particle sizer (SMPS). Filter penetration P as function of the particle diameter dp was expressed by View the MathML source
. The values of x determined were smaller than the theoretical value of 1.29, indicating enhanced penetration of small particles and deviation from the classical filtration model. Because of possible systematic errors in the size selection, we focus on the differences of x from material to material, which indicate different sticking probabilities. We apply a statistical test, which yields a 90% confidence level for the result. There is a sticking probability of <100% at least for NaCl particles and even more so for NiSO4. This result is in contrast to former findings using metal and/or charged particles, and we speculate that the discrepancy is due to the smaller Hamaker constant of salts and that particle charge is important for the sticking probability
Radiation and Dose-densification of R-CHOP in Primary Mediastinal B-cell Lymphoma: Subgroup Analysis of the UNFOLDER Trial
UNFOLDER (NCT00278408, EUDRACT 2005-005218-19) is a phase-3 trial in patients with aggressive B-cell lymphoma and intermediate prognosis, including primary mediastinal B-cell lymphoma (PMBCL). In a 2 × 2 factorial design, patients were randomized to 6× R-CHOP-14 or R-CHOP-21 (rituximab, cyclophosphamide, doxorubicin, vincristine, and prediso(lo)ne) and to consolidation radiotherapy to extralymphatic/bulky disease or observation. Response was assessed according to the standardized criteria from 1999, which did not include F-18 fluordesoxyglucose positron emission tomography/computed tomography (FDG-PET) scans. Primary end point was event-free survival (EFS). A subgroup of 131 patients with PMBCLs was included (median age, 34 y; 54% female, 79% elevated lactate dehydrogenase (LDH), 20% LDH >2× upper limit of normal [ULN], and 24% extralymphatic involvement). Eighty-two (R-CHOP-21: 43 and R-CHOP-14: 39) patients were assigned to radiotherapy and 49 (R-CHOP-21: 27, R-CHOP-14: 22) to observation. The 3-year EFS was superior in radiotherapy arm (94% [95% confidence interval (CI), 89-99] versus 78% [95% CI, 66-89]; P = 0.0069), due to a lower rate of partial responses (PRs) (2% versus 10%). PR triggered additional treatment, mostly radiotherapy (n = 5; PR: 4; complete response/unconfirmed complete response: 1). No significant differences were observed in progression-free survival (PFS) (95% [95% CI, 90-100] versus 90% [95% CI, 81-98]; P = 0.25) nor in overall survival (OS) (98% [95% CI, 94-100] versus 96% [95% CI, 90-100]; P = 0.64). Comparing R-CHOP-14 and R-CHOP-21, EFS, PFS, and OS were not different. A prognostic marker for adverse outcome was elevated LDH >2× ULN (EFS: P = 0.016; PFS: P = 0.0049; OS: P = 0.0014). With the limitation of a pre-PET-era trial, the results suggest a benefit of radiotherapy only for patients responding to R-CHOP with PR. PMBCL treated with R-CHOP have a favorable prognosis with a 3-year OS of 97%
Search for supersymmetry in events with b-quark jets and missing transverse energy in pp collisions at 7 TeV
Results are presented from a search for physics beyond the standard model
based on events with large missing transverse energy, at least three jets, and
at least one, two, or three b-quark jets. The study is performed using a sample
of proton-proton collision data collected at sqrt(s) = 7 TeV with the CMS
detector at the LHC in 2011. The integrated luminosity of the sample is 4.98
inverse femtobarns. The observed number of events is found to be consistent
with the standard model expectation, which is evaluated using control samples
in the data. The results are used to constrain cross sections for the
production of supersymmetric particles decaying to b-quark-enriched final
states in the context of simplified model spectra.Comment: Submitted to Physical Review
The genomic and transcriptional landscape of primary central nervous system lymphoma
Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations
Genome-wide association studies in oesophageal adenocarcinoma and Barrett's oesophagus: a large-scale meta-analysis.
BACKGROUND: Oesophageal adenocarcinoma represents one of the fastest rising cancers in high-income countries. Barrett's oesophagus is the premalignant precursor of oesophageal adenocarcinoma. However, only a few patients with Barrett's oesophagus develop adenocarcinoma, which complicates clinical management in the absence of valid predictors. Within an international consortium investigating the genetics of Barrett's oesophagus and oesophageal adenocarcinoma, we aimed to identify novel genetic risk variants for the development of Barrett's oesophagus and oesophageal adenocarcinoma. METHODS: We did a meta-analysis of all genome-wide association studies of Barrett's oesophagus and oesophageal adenocarcinoma available in PubMed up to Feb 29, 2016; all patients were of European ancestry and disease was confirmed histopathologically. All participants were from four separate studies within Europe, North America, and Australia and were genotyped on high-density single nucleotide polymorphism (SNP) arrays. Meta-analysis was done with a fixed-effects inverse variance-weighting approach and with a standard genome-wide significance threshold (p<5 × 10-8). We also did an association analysis after reweighting of loci with an approach that investigates annotation enrichment among genome-wide significant loci. Furthermore, the entire dataset was analysed with bioinformatics approaches-including functional annotation databases and gene-based and pathway-based methods-to identify pathophysiologically relevant cellular mechanisms. FINDINGS: Our sample comprised 6167 patients with Barrett's oesophagus and 4112 individuals with oesophageal adenocarcinoma, in addition to 17 159 representative controls from four genome-wide association studies in Europe, North America, and Australia. We identified eight new risk loci associated with either Barrett's oesophagus or oesophageal adenocarcinoma, within or near the genes CFTR (rs17451754; p=4·8 × 10-10), MSRA (rs17749155; p=5·2 × 10-10), LINC00208 and BLK (rs10108511; p=2·1 × 10-9), KHDRBS2 (rs62423175; p=3·0 × 10-9), TPPP and CEP72 (rs9918259; p=3·2 × 10-9), TMOD1 (rs7852462; p=1·5 × 10-8), SATB2 (rs139606545; p=2·0 × 10-8), and HTR3C and ABCC5 (rs9823696; p=1·6 × 10-8). The locus identified near HTR3C and ABCC5 (rs9823696) was associated specifically with oesophageal adenocarcinoma (p=1·6 × 10-8) and was independent of Barrett's oesophagus development (p=0·45). A ninth novel risk locus was identified within the gene LPA (rs12207195; posterior probability 0·925) after reweighting with significantly enriched annotations. The strongest disease pathways identified (p<10-6) belonged to muscle cell differentiation and to mesenchyme development and differentiation. INTERPRETATION: Our meta-analysis of genome-wide association studies doubled the number of known risk loci for Barrett's oesophagus and oesophageal adenocarcinoma and revealed new insights into causes of these diseases. Furthermore, the specific association between oesophageal adenocarcinoma and the locus near HTR3C and ABCC5 might constitute a novel genetic marker for prediction of the transition from Barrett's oesophagus to oesophageal adenocarcinoma. Fine-mapping and functional studies of new risk loci could lead to identification of key molecules in the development of Barrett's oesophagus and oesophageal adenocarcinoma, which might encourage development of advanced prevention and intervention strategies. FUNDING: US National Cancer Institute, US National Institutes of Health, National Health and Medical Research Council of Australia, Swedish Cancer Society, Medical Research Council UK, Cambridge NIHR Biomedical Research Centre, Cambridge Experimental Cancer Medicine Centre, Else Kröner Fresenius Stiftung, Wellcome Trust, Cancer Research UK, AstraZeneca UK, University Hospitals of Leicester, University of Oxford, Australian Research Council
Benchmarking whole exome sequencing in the German Network for Personalized Medicine
Introduction
Whole Exome Sequencing (WES) has emerged as an efficient tool in clinical cancer diagnostics to broaden the scope from panel-based diagnostics to screening of all genes and enabling robust determination of complex biomarkers in a single analysis.
Methods
To assess concordance, six formalin-fixed paraffin-embedded (FFPE) tissue specimens and four commercial reference standards were analyzed by WES as matched tumor-normal DNA at 21 NGS centers in Germany, each employing local wet-lab and bioinformatics investigating somatic and germline variants, copy-number alteration (CNA), and different complex biomarkers. Somatic variant calling was performed in 494 diagnostically relevant cancer genes. In addition, all raw data were re-analyzed with a central bioinformatic pipeline to separate wet- and dry-lab variability.
Results
The mean positive percentage agreement (PPA) of somatic variant calling was 76% and positive predictive value (PPV) 89% compared a consensus list of variants found by at least five centers. Variant filtering was identified as the main cause for divergent variant calls. Adjusting filter criteria and re-analysis increased the PPA to 88% for all and 97% for clinically relevant variants. CNA calls were concordant for 82% of genomic regions. Calls of homologous recombination deficiency (HRD), tumor mutational burden (TMB), and microsatellite instability (MSI) status were concordant for 94%, 93%, and 93% respectively. Variability of CNAs and complex biomarkers did not increase considerably using the central pipeline and was hence attributed to wet-lab differences.
Conclusion
Continuous optimization of bioinformatic workflows and participating in round robin tests are recommend
Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma
Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
- …