133 research outputs found

    Dynamic Modeling of Carbon Metabolism During the Dormant Period Accurately Predicts the Changes in Frost Hardiness in Walnut Trees Juglans regia L.

    Get PDF
    The leafless period is often considered as inactive, although trees have to actively modulate their metabolism through the cold acclimation/deacclimation processes, to cope with frost exposure during winter and to restore growth ability in spring. Carbon metabolism is a key component of these processes through the osmotic control of extracellular ice formation and the trophic control of bud growth. The influence of temperature on the inter-conversion between starch and soluble carbohydrate has been evidenced for years, but we are currently missing an operational tool to predict starch vs. soluble carbohydrate contents during this period, which should allow to better predict frost hardiness. For this purpose, we exposed 1-year-old branches of Juglans regia to constant temperature for one to 3 weeks and measured the changes in carbohydrate composition at three periods (autumn, winter, and spring). As expected, the temperature significantly affected the changes in carbohydrate composition, but the water content and the sampling period were also relevant. Higher starch hydrolysis was observed at low temperature (<5°C) for all sampling periods. Starch hydrolysis was also observed at warm temperature, but in autumn only. These data were used to compare three modeling approaches simulating the changes in carbohydrate composition through enzymatic analogy. The most empirical and the most mechanistic approach did not succeed to simulate external observations (Root Mean Standard Error of Prediction (RMSEP) > 30 mg.g DM−1, Efficiency (Eff) <0), whereas the intermediate model was more efficient (RMSEP = 15.19 mg.g DM−1, Eff = 0.205 and 16.61 mg.g DM−1, Eff = 0.366, for GFS (Glucose + Fructose + Sucrose) and starch, respectively). The accuracy of the model was further improved when using field data for calibration (RMSEP = 5.86 mg.g DM−1, Eff = 0.962; RMSEP = 10.56 mg.g DM−1, Eff = 0.752, for GFS and starch, respectively). This study provided an operative tool to simulate carbohydrate dynamics over leafless period that could predict frost hardiness with approx. 3.4°C accuracy with temperature, water content and initial starch and soluble carbohydrate measurements. It should now be tested under various meteorological conditions and biological systems

    Xylem embolism and bubble formation during freezing suggest complex dynamics of pressure-tension in Betula pendula stems

    Full text link
    Freeze-thaw-induced embolism is a key limiting factor for perennial plants in frost-exposed environments. Gas bubbles are formed during freezing, when the low chemical potential of the ice reaches a critical cavitation threshold and expand during thawing. However, when water freezes, its volume increases by 9%, generating local pressures, which can limit the formation of bubbles. To characterize local dynamic of pressure-tension and physical state of the sap during freeze-thaw cycles, we simultaneously used ultrasonic acoustic emissions analysis and synchrotron-based High Resolution Computed Tomography on the diffuse-porous species Betula pendula. Visualization of individual air-filled vessels was performed to measure freeze-thaw induced embolism after successive freeze-thaw cycles down to -10C or -20C during the leafy and the leafless periods. We also measured the distribution of gas bubbles and made additional continuous monitoring of embolism spreading using a dedicated cooling system that allowed X-ray scanning during freezing and thawing. Experiments confirmed that ultrasonic emissions occurred after the onset of ice formation, together with bubble formation, whereas the development of embolism took place after thawing in all cases. The pictures of frozen tissues indicated that upon freezing the balance between negative pressure generated by the low water potential of the ice and the positive pressure induced by the volumetric increase of ice can provoke inward flow from the cell wall toward the lumen of the vessels. We found no evidence that wider vessels within a tissue were more prone to embolism although the occurrence of gas bubbles in larger conduits would make them prone to earlier embolism. These results highlight the need to monitor local pressure as well as ice and air distribution during xylem freezing to understand the mechanism leading to frost-induced embolism.Comment: 41 pages, 7 figures, 4 supplementary figure

    Differential freezing resistance and photoprotection in C3 and C4 eudicots and grasses

    Get PDF
    Globally, C4 plants dominate hot, open environments, but this general pattern is underpinned by important differences in the biogeography of C4 lineages. In particular, the species richness of C4 Poaceae (grasses) increases strongly with increasing temperature, whereas that of the major C4 eudicot group Chenopodiaceae correlates positively with aridity. Freezing tolerance is a crucial determinant of biogeographical relationships with temperature and is mediated by photodamage and cellular disruption by desiccation, but little is known about differences between C4 families. This study hypothesized that there is a greater risk of freezing damage via these mechanisms in C4 Poaceae than Chenopodiaceae, that freezing protection differs between the taxonomic groups, and that freezing tolerance of species is linked to arid habitat preference. Chlorophyll fluorescence, water relations, and freezing injury were compared in four C3 and six C4 species of Poaceae and Chenopodiaceae from the same Mongolian flora. Contrary to expectations, freezing-induced leaf mortality and photodamage were lower in Poaceae than Chenopodiaceae species, and unrelated to photosynthetic pathway. The freezing resistance of Poaceae species resulted from constitutive protection and cold acclimation and an ability to protect the photosynthetic apparatus from photodamage. Freezing protection was associated with low osmotic potential and low tissue elasticity, and freezing damage was accompanied by electrolyte leakage, consistent with cell-membrane disruption by ice. Both Chenopodiaceae and Poaceae had the potential to develop cold acclimation and withstand freezing during the growing season, which conflicted with the hypothesis. Instead, freezing tolerance was more closely associated with life history and ecological preference in these Mongolian species

    A magnetic fabric study of the Aigoual–Saint Guiral–Liron granite pluton (French Massif Central) and relationships with its associated dikes.

    No full text
    International audienceIn the southeastern French Massif Central, the Aigoual–Saint Guiral–Liron pluton consists of porphyritic and microgranitic types. The latter is encountered within dikes forming the northern end of the pluton. Both types show prefull crystallization microstructures indicating weak subsolidus deformations. An anisotropy of magnetic susceptibility (AMS) study has been carried out to determine the granite fabric. Biotite, local hornblende, and small grains of magnetite are the main carriers of AMS in both types. Porphyritic granite and dikes display different AMS patterns related to magma dynamics and regional deformation recorded during crystallization. In the porphyritic type, the AMS lineation is mainly consistent with the regional, NW-SE to E-W trending, extensional event coeval with emplacement and crystallization of the pluton indicating an influence of regional tectonics on the linear fabric development. The dome shaped foliation pattern of the Saint Guiral massif likely corresponds to internal deformation-related processes within the pluton. In the microgranite dike swarm, the NNE-SSW trending lineations with shallow plunges record magmatic flow processes within dikes, i.e., magma injection and filling of dikes from a probable source located southwestward. Regional tectonics played a significant role in the pluton geometry and fabric development. For example, the NE-SW trend of the dikes suggests that extensional fractures took place in the same extensional strain field as elsewhere in the pluton. Different fabric development modes were therefore responsible for the contrasted fabric patterns between the microgranite and the porphyritic granite

    An artificial neural network approach to the estimation of stem water potential from frequency domain reflectometry soil moisture measurements and meteorological data

    Full text link
    Stem water potential seems to be a sensitive measure of plant water status. Nonetheless, it is a labour-intensive measurement and is not suited for automatic irrigation scheduling or control. This study describes the application of artificial neural networks to estimate stem water potential from soil moisture at different depths and standard meteorological variables, considering a limited data set. The experiment was carried out with `Navelina¿ citrus trees grafted on `Cleopatra¿ mandarin. Principal components analysis and multiple linear regression were used preliminarily to assess the relationships among observations and to propose other models to allow a comparative analysis, respectively. Two principal components account for the systematic data variation. The optimum regression equation of stem water potential considered temperature, relative humidity, solar radiation and soil moisture at 50 cm as input variables, with a determination coefficient of 0.852. When compared with their corresponding regression models, ANNs presented considerably higher performance accuracy (with an optimum determination coefficient of 0.926) due to a higher input-output mapping ability.The authors are grateful to TECVASA, which obtained a subsidy from the Conselleria de Agricultura, Pesca y Alimentacion de la Generalitat Valenciana (DOCV 5493, 19 April 2007, no. exp.: 2007TAHAVAL00018), and to the Valencian Institute for Agricultural Research (IVIA) for providing the meteorological data for this study.Martí Pérez, PC.; Gasque Albalate, M.; González Altozano, P. (2013). An artificial neural network approach to the estimation of stem water potential from frequency domain reflectometry soil moisture measurements and meteorological data. Computers and Electronics in Agriculture. 91:75-86. doi:10.1016/j.compag.2012.12.001S75869

    Influence of soil water content and atmospheric conditions on leaf water potential in cv. "Touriga Nacional" deep-rooted vineyards

    Get PDF
    Abstract In this study, the influence of soil and atmosphere conditions on noon and basal leaf water potential of vines ‘‘Touriga Nacional’’ in the Da˜o region submitted to different irrigation treatments is analysed. Both indicators showed to be dependent on environmental conditions at the time of measurement. Leaf water potential at noon of fully watered plants was linearly related with atmospheric conditions, with values registered when vapour pressure deficit (VPD) was higher than approximately 3 kPa being no different from the values registered in stressed plants. Therefore, this indicator cannot be reliably used to distinguish different plant water stress levels when atmospheric conditions induce high evaporative demands. The basal leaf water potential (wb) was also influenced by VPD at the time of measurement for all soil water conditions. In well irrigated plants, it was even possible to establish a baseline that can therefore be used to identify nonwater stressed conditions (wb (MPa) = -0.062–0.0972 VPD (kPa), r2 = 0.78). A good correlation was found between soil humidity and wb. However, more than the average value of the whole thickness of soil monitored, the wb values were dependent on the distribution of soil humidity, with the plants responding to the presence of wet layers

    A multidisciplinary study of a syntectonic pluton close to a major lithospheric-scale fault: relationships between the Montmarault granitic massif and the Sillon Houiller Fault in the Variscan French Massif Central. Part II: Gravity, aeromagnetic investigations and 3D geologic modeling.

    No full text
    International audienceNew gravity and aeromagnetic investigations have been carried out to understand the emplacement mechanisms of a granitic pluton and the relationships with a nearby lithospheric-scale fault. This paper concerns the second part of a methodological multidisciplinary study and complements previous geochronologic and Anisotropy of Magnetic Susceptibility (AMS) studies on the same pluton. In the northern part of the Variscan French Massif Central (FMC), the Montmarault massif crops out along the Sillon Houiller Fault (SHF). Bouguer and aeromagnetic anomaly maps imply thickening of the pluton along the SHF and suggest laccolitic spreading northwestwards. Based on petrophysical measurements, direct 2D joint gravity and magnetic modeling has been performed along 10 cross-sections. In order to quantitatively constrain the 3D pluton geometry and its relationships with surrounding geologic units, these geophysical cross-sections, new structural information (field and AMS measurements) and petrophysical data have been integrated into a regional 3D geological and geophysical model. Altogether, the results obtained from geochronology, petro-magnetic fabrics (Part I), gravity and aeromagnetic investigations as well as 3D modeling (Part II), demonstrate that the Montmarault pluton was emplaced during the Namurian period along the SHF. Our results further show that, at that time, in response to a NW-SE regional extension, if the SHF existed, it behaved as a normal fault. Mylonites attesting for synmagmatic normal motion on the northeastern part of the Montmarault pluton strengthen this tectonic scheme. During the Late Carboniferous, the FMC experienced NE-SW extension along the SHF by 80 km of brittle left lateral wrench offset. This second tectonic event is well recorded in the Stephanian coal basins which were formed along NW- SE listric brittle faults and constrain the present-day shape of the Montmarault pluton

    Allocation, stress tolerance and carbon transport in plants: How does phloem physiology affect plant ecology?

    Get PDF
    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems, and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment
    corecore