42 research outputs found

    Energy consumption comparison between air conditioning system Mini-Split and Variable Refrigerant Flow in an educational building

    Get PDF
    Este estudio compara el comportamiento del consumo energético para dos tecnologías diferentes de climatización al interior del laboratorio de Máquinas Eléctricas de la Universidad de la Costa CUC. Durante el desarrollo de esta investigación se caracterizó el recinto y se identificaron los equipos con consumo significativo, destacándose el sistema de climatización como el de mayor consumo de energía. Teniendo en cuenta lo anterior, se realizó una comparación del consumo energético entre el sistema de climatización (tipo mini Split) con un sistema de volumen de refrigerante variable (VRF), considerando las mismas condiciones de carga interna y externas asociadas al estudio deedificaciones educativas. Esta comparación se llevó a cabo realizando mediciones de potencia eléctrica activa y consumo de energía del sistema actual durante un período de una semana típica de operación. Estos resultados se compararon por medio del modelamiento y simulación dinámica del desempeño energético del recinto, mediante el empleo del software EnergyPlus (E+) como herramienta predictiva y con asignación de la tecnología de acondicionamiento de aire tipo VRF. Los resultados de esta simulación evidenciaron el potencial de ahorro del 30% ante esta variación tecnológica.In this Study the behavior of energy consumption for two different air conditioning technologies into the Electrical Machines Laboratory at Universidad de la Costa CUC was compared. During this investigation the building was assesed, and the equipments with significant energy consumption were identified, realizing the climate system being the highest one. Considering the above, a comparison of energy consumption was made between mini-split technology with a system of variable refrigerant volume (VRF), using the same internal and external conditions associated to the study of educational buildings. This comparison was carried out by measuring active electric power and energ

    A SCN9A gene-encoded dorsal root ganglia sodium channel polymorphism associated with severe fibromyalgia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A consistent line of investigation suggests that autonomic nervous system dysfunction may explain the multi-system features of fibromyalgia (FM); and that FM is a sympathetically maintained neuropathic pain syndrome. Dorsal root ganglia (DRG) are key sympathetic-nociceptive short-circuit sites. Sodium channels located in DRG (particularly Nav1.7) act as molecular gatekeepers for pain detection. Nav1.7 is encoded in gene SCN9A of chromosome 2q24.3 and is predominantly expressed in the DRG pain-sensing neurons and sympathetic ganglia neurons. Several SCN9A sodium channelopathies have been recognized as the cause of rare painful dysautonomic syndromes such as paroxysmal extreme pain disorder and primary erythromelalgia. The aim of this study was to search for an association between fibromyalgia and several SCN9A sodium channels gene polymorphisms.</p> <p>Methods</p> <p>We studied 73 Mexican women suffering from FM and 48 age-matched women who considered themselves healthy. All participants filled out the Fibromyalgia Impact Questionnaire (FIQ). Genomic DNA from whole blood containing EDTA was extracted by standard techniques. The following SCN9A single-nucleotide polymorphisms (SNP) were determined by 5' exonuclease TaqMan assays: rs4371369; rs4387806; rs4453709; rs4597545; rs6746030; rs6754031; rs7607967; rs12620053; rs12994338; and rs13017637.</p> <p>Results</p> <p>The frequency of the rs6754031 polymorphism was significantly different in both groups (<it>P </it>= 0.036) mostly due to an absence of the GG genotype in controls. Interestingly; patients with this rs6754031 GG genotype had higher FIQ scores (median = 80; percentile 25/75 = 69/88) than patients with the GT genotype (median = 63; percentile 25/75 = 58/73; <it>P </it>= 0.002) and the TT genotype (median = 71; percentile 25/75 = 64/77; <it>P </it>= 0.001).</p> <p>Conclusion</p> <p>In this ethnic group; a disabling form of FM is associated to a particular SCN9A sodium channel gene variant. These preliminary results raise the possibility that some patients with severe FM may have a dorsal root ganglia sodium channelopathy.</p

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore