312 research outputs found

    Long-distance dispersal of pigeons and doves generated new ecological opportunities for host-switching and adaptive radiation by their parasites.

    Get PDF
    Adaptive radiation is an important mechanism of organismal diversification and can be triggered by new ecological opportunities. Although poorly studied in this regard, parasites are an ideal group in which to study adaptive radiations because of their close associations with host species. Both experimental and comparative studies suggest that the ectoparasitic wing lice of pigeons and doves have adaptively radiated, leading to differences in body size and overall coloration. Here, we show that long-distance dispersal by dove hosts was central to parasite diversification because it provided new ecological opportunities for parasites to speciate after host-switching. We further show that among extant parasite lineages host-switching decreased over time, with cospeciation becoming the more dominant mode of parasite speciation. Taken together, our results suggest that host dispersal, followed by host-switching, provided novel ecological opportunities that facilitated adaptive radiation by parasites

    Scintillation-only Based Pulse Shape Discrimination for Nuclear and Electron Recoils in Liquid Xenon

    Full text link
    In a dedicated test setup at the Kamioka Observatory we studied pulse shape discrimination (PSD) in liquid xenon (LXe) for dark matter searches. PSD in LXe was based on the observation that scintillation light from electron events was emitted over a longer period of time than that of nuclear recoil events, and our method used a simple ratio of early to total scintillation light emission in a single scintillation event. Requiring an efficiency of 50% for nuclear recoil retention we reduced the electron background to 7.7\pm1.1(stat)\pm1.2 0.6(sys)\times10-2 at energies between 4.8 and 7.2 keVee and to 7.7\pm2.8(stat)\pm2.5 2.8(sys)\times10-3 at energies between 9.6 and 12 keVee for a scintillation light yield of 20.9 p.e./keV. Further study was done by masking some of that light to reduce this yield to 4.6 p.e./keV, the same method results in an electron event reduction of 2.4\pm0.2(stat)\pm0.3 0.2(sys)\times10-1 for the lower of the energy regions above. We also observe that in contrast to nuclear recoils the fluctuations in our early to total ratio for electron events are larger than expected from statistical fluctuations.Comment: 25 pages, 15 figure

    Cosmic Microwave Background Anisotropies from Scaling Seeds: Global Defect Models

    Get PDF
    We investigate the global texture model of structure formation in cosmogonies with non-zero cosmological constant for different values of the Hubble parameter. We find that the absence of significant acoustic peaks and little power on large scales are robust predictions of these models. However, from a careful comparison with data we conclude that at present we cannot safely reject the model on the grounds of present CMB data. Exclusion by means of galaxy correlation data requires assumptions on biasing and statistics. New, very stringent constraints come from peculiar velocities. Investigating the large-N limit, we argue that our main conclusions apply to all global O(N) models of structure formation.Comment: LaTeX file with RevTex, 27 pages, 23 eps figs., submitted to Phys. Rev. D. A version with higher quality images can be found at http://mykonos.unige.ch/~kunz/download/lam.tar.gz for the LaTeX archive and at http://mykonos.unige.ch/~kunz/download/lam.ps.gz for the compiled PostScript fil

    Molecular landscape of pelvic organ prolapse provides insights into disease etiology

    Get PDF
    Pelvic organ prolapse (POP) represents a major health care burden in women, but its underlying pathophysiological mechanisms have not been elucidated. We first used a case-control design to perform an exome chip study in 526 women with POP and 960 control women to identify single nucleotide variants (SNVs) associated with the disease. We then integrated the functional interactions between the POP candidate proteins derived from the exome chip study and other POP candidate molecules into a molecular landscape. We found significant associations between POP and SNVs in 54 genes. The proteins encoded by 26 of these genes fit into the molecular landscape, together with 43 other POP candidate molecules. The POP landscape is located in and around epithelial cells and fibroblasts of the urogenital tract and harbors four interacting biological processes—epithelial-mesenchymal transition, immune response, modulation of the extracellular matrix, and fibroblast function—that are regulated by sex hormones and TGFB1. Our findings were corroborated by enrichment analyses of differential gene expression data from an independent POP cohort. Lastly, based on the landscape and using vaginal fibroblasts from women with POP, we predicted and showed that metformin alters gene expression in these fibroblasts in a beneficial direction. In conclusion, our integrated molecular landscape of POP provides insights into the biological processes underlying the disease and clues towards novel treatments.Development and application of statistical models for medical scientific researc

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Kiyang-yang, a West-African Postwar Idiom of Distress

    Get PDF
    In 1984, a healing cult for young barren women in southern Guinea Bissau developed into a movement, Kiyang-yang, that shook society to its foundations and had national repercussions. “Idiom of distress” is used here as a heuristic tool to understand how Kiyang-yang was able to link war and post-war-related traumatic stress and suffering on both individual and group levels. An individual experience born from a traumatic origin may be generalized into an idiom that diverse sectors of society could embrace for a range of related reasons. We argue that, for an idiom to be understood and appropriated by others, there has to be resonance at the level of symbolic language and shared experiences as well as at the level of the culturally mediated contingent emotions it communicates. We also argue that through its symbolic references to structural causes of suffering, an idiom of distress entails a danger for those in power. It can continue to exist only if its etiology is not exposed or the social suffering it articulates is not eliminated. We finally argue that idioms of distress are not to be understood as discrete diagnostic categories or as monodimensional expressions of “trauma” that can be addressed

    Mathematical model of plant-virus interactions mediated by RNA interference

    Get PDF
    Cross-protection, which refers to a process whereby artificially inoculating a plant with a mild strain provides protection against a more aggressive isolate of the virus, is known to be an effective tool of disease control in plants. In this paper we derive and analyse a new mathematical model of the interactions between two competing viruses with particular account for RNA interference. Our results show that co-infection of the host can either increase or decrease the potency of individual infections depending on the levels of cross-protection or cross-enhancement between different viruses. Analytical and numerical bifurcation analyses are employed to investigate the stability of all steady states of the model in order to identify parameter regions where the system exhibits synergistic or antagonistic behaviour between viral strains, as well as different types of host recovery. We show that not only viral attributes but also the propagating component of RNA-interference in plants can play an important role in determining the dynamics
    corecore