715 research outputs found

    Monolithic read-out electronics for the silicon calorimeters at SSC/LHC colliders

    Get PDF
    Abstract A very fast monolithic charge sensitive preamplifier using HF2CMOS technology featuring less than 45mW power dissipation for a 5V maximum output voltage swing, with a slew rate about 700V/μsec for 150pF input capacitance (≈ 7nsec rise time), has been realized. A front-end set up for the read out of more detectors and the shaping of the signal with a 20nsec RC-CR filter employing only monolithic preamplifiers is described and tested. The measured value of ENC (Electronic Noise Charge) for the arrangement with 150pF input capacitance is 17keRMS. The preamplifier meets the requirements for silicon calorimetry application for experiments at the hadron colliders SSC/LHC

    Induced selectivity in the photochemistry of estrone derivatives in sustainable and micellar environment: preparative and mechanistic studies

    Get PDF
    In this study, we carried out preparative and mechanistic studies on the photochemical reaction of a series of 3-acylestrone derivatives in confined and sustainable micellar environment under steady-state conditions and the results were compared with those obtained in cyclohexane solution. Theaim of this work is mainly focused to show whether the nature of the surfactant (cationic, neutral and anionic) leads to noticeable selectivity in the photoproduct formation. The 3-acylestrone derivatives underwent the photo-Fries rearrangement, with concomitant homolytic fragmentation of the ester group and [1;3]-acyl migration. This pathway afforded the ortho-acyl estrone derivatives, the main photoproducts together with estrone. However, epimerization of the ortho regioisomer 2-acetylestrone and estrone through Norrish Type I photoreaction occurred involving the fragmentation of the C-alpha at the carbonyl group (C-17) of the steroid. UV-visible and 2D-NMR (NOESY) spectroscopies have been employed to measure the binding constant Kb and the location of the steroids within the hydrophobic core of the micelle.Fil: Quindt, Matías Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Gola, Gabriel Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Ramirez, Javier Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Bonesi, Sergio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; Argentin

    Breaking the rules of time-domain diffuse optics: working with 1 cm2 SiPM and well-beyond the single-photon statistics

    Get PDF
    Time domain diffuse optics (TD-DO) relies on the injection of ps laser pulses and on the collection of the arrival times of scattered photons. To reach the ultimate limits of the technique (allowing to investigate even structures at depth >5 cm), a large area detector is needed. To this extent, we realized and present a new silicon photomultiplier featuring a 1 cm2 area. To the best of our knowledge, it represents the largest detector ever proposed for TD-DO and shows a light harvesting capability which is more than 1 decade larger than the state-of-the-art technology system. To assess its suitability for TDDO measurements, we tested the detector with several procedures from shared protocols (BIP, nEUROPt and MEDPHOT). However, the light harvesting capability of a detector with large area can be proficiently exploited only if coupled to timing electronics working in sustained count-rate CR (i.e., well above the single photon statistics). For this reason, we study the possibility to work in a regime where (even more than) one photon per laser pulse is detected (i.e., more than 100% laser repetition rate) exploiting in-silico technology. The results show that the possibility to use sustained count-rate represents a dramatic improvement in the number of photons detected with respect to current approaches (where count-rate of 1-5% of the laser repetition rate are used) without significant losses in the measurement accuracy. This represents a new horizon for TD-DO measurements, opening the way to new applications (e.g., optical investigation of the lung or monitoring of fast dynamics never studied before)

    Cryogenic Characterization of FBK HD Near-UV Sensitive SiPMs

    Full text link
    We report on the characterization of near-ultraviolet high density silicon photomultiplier (\SiPM) developed at Fondazione Bruno Kessler (\FBK) at cryogenic temperature. A dedicated setup was built to measure the primary dark noise and correlated noise of the \SiPMs\ between 40 and 300~K. Moreover, an analysis program and data acquisition system were developed to allow the precise characterization of these parameters, some of which can vary up to 7 orders of magnitude between room temperature and 40~K. We demonstrate that it is possible to operate the \FBK\ near-ultraviolet high density \SiPMs\ at temperatures lower than 100~K with a dark rate below 0.01 cps/mm2^2 and total correlated noise probability below 35\% at an over-voltage of 6~V. These results are relevant for the development of future cryogenic particle detectors using \SiPMs\ as photosensors

    A Minimalist Approach to the Design of Complexity-Enriched Bioactive Small Molecules: Discovery of Phenanthrenoid Mimics as Antiproliferative Agents

    Get PDF
    Over the last decades, much effort has been devoted to the design of the “ideal” library for screening, the most promising strategies being those which draw inspiration from biogenic compounds, as the aim is to add biological relevance to such libraries. On the other hand, there is a growing understanding of the role that molecular complexity plays in the discovery of new bioactive small molecules. Nevertheless, the introduction of molecular complexity must be balanced with synthetic accessibility. In this work, we show that both concepts can be efficiently merged—in a minimalist way—by using very simple guidelines during the design process along with the application of multicomponent reactions as key steps in the synthetic process. Natural phenanthrenoids, a class of plant aromatic metabolites, served as inspiration for the synthesis of a library in which complexity-enhancing features were introduced in few steps using multicomponent reactions. These resulting chemical entities were not only more complex than the parent natural products, but also interrogated an alternative region of the chemical space, which led to an outstanding hit rate in an antiproliferative assay: four out of twenty-six compounds showed in vitro activity, one of them being more potent than the clinically useful drug 5-fluorouracil.Fil: Alonso, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Quezada, Maria Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Gola, Gabriel Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Richmond, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Cabrera, Gabriela Myriam. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Barquero, Andrea Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Ramirez, Javier Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; Argentin

    The effect of sex and irritable bowel syndrome on HPA axis response and peripheral glucocorticoid receptor expression

    Get PDF
    Background & Aims: Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been reported in irritable bowel syndrome (IBS). Enhanced HPA axis responses have been associated with reduced glucocorticoid receptor (GR) mediated negative feedback inhibition. We aimed to study the effects of IBS status, sex, or presence of early adverse life events (EAL) on the cortisol response to corticotropin-releasing factor (CRF) and adrenocorticotropic hormone (ACTH), and on GR mRNA expression in peripheral blood mononuclear cells (PBMCs). Methods: Rome III+ IBS patients and healthy controls underwent CRF (1μg/kg ovine) and ACTH (250μg) stimulation tests with serial plasma ACTH and cortisol levels measured (n=116). GR mRNA levels were measured using quantitative PCR (n=143). Area under the curve (AUC) and linear mixed effects models were used to compare ACTH and cortisol response measured across time between groups. Results: There were divergent effects of IBS on the cortisol response to ACTH by sex. In men, IBS was associated with an increased AUC (p= 0.009), but in women AUC was blunted in IBS(p=0.006). Men also had reduced GR mRNA expression (p=0.007). Cumulative exposure to EALs was associated with an increased HPA response. Lower GR mRNA was associated with increased pituitary HPA response and increased severity of overall symptoms and abdominal pain in IBS. Conclusion: This study highlights the importance of considering sex in studies of IBS and the stress response in general. Our findings also provide support for PBMC GR mRNA expression as a peripheral marker of central HPA response

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    Bose-Einstein correlations of charged hadrons in proton-proton collisions at s\sqrt s = 13 TeV

    Get PDF
    Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s \sqrt{s} = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s \sqrt{s} = 7 TeV, as well as with theoretical predictions.[graphic not available: see fulltext]Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s=\sqrt{s} = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s=\sqrt{s} = 7 TeV, as well as with theoretical predictions

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.
    corecore