131 research outputs found

    Development of a multilevel converter topology for transformer-less connection of renewable energy systems

    Get PDF
    The global need to reduce dependence on fossil fuels for electricity production has become an ongoing research theme in the last decade. Clean energy sources (such as wind energy and solar energy) have considerable potential to reduce reliance on fossil fuels and mitigate climate change. However, wind energy is going to become more mainstream due to technological advancement and geographical availability. Therefore, various technologies exist to maximize the inherent advantages of using wind energy conversion systems (WECSs) to generate electrical power. One important technology is the power electronics interface that enables the transfer and effective control of electrical power from the renewable energy source to the grid through the filter and isolation transformer. However, the transformer is bulky, generates losses, and is also very costly. Therefore, the term "transformer-less connection" refers to eliminating a step-up transformer from the WECS, while the power conversion stage performs the conventional functions of a transformer. Existing power converter configurations for transformer-less connection of a WECS are either based on the generator-converter configuration or three-stage power converter configuration. These configurations consist of conventional multilevel converter topologies and two-stage power conversion between the generator-side converter topology and the high-order filter connected to the collection point of the wind power plant (WPP). Thus, the complexity and cost of these existing configurations are significant at higher voltage and power ratings. Therefore, a single-stage multilevel converter topology is proposed to simplify the power conversion stage of a transformer-less WECS. Furthermore, the primary design challenges – such as multiple clamping devices, multiple dc-link capacitors, and series-connected power semiconductor devices – have been mitigated by the proposed converter topology. The proposed converter topology, known as the "tapped inductor quasi-Z-source nested neutral-point-clamped (NNPC) converter," has been analyzed, and designed, and a prototype of the topology developed for experimental verification. A field-programmable gate array (FPGA)-based modulation technique and voltage balancing control technique for maintaining the clamping capacitor voltages was developed. Hence, the proposed converter topology presents a single-stage power conversion configuration. Efficiency analysis of the proposed converter topology has been studied and compared to the intermediate and grid-side converter topology of a three-stage power converter configuration. A direct current (DC) component minimization technique to minimize the dc component generated by the proposed converter topology was investigated, developed, and verified experimentally. The proposed dc component minimization technique consists of a sensing and measurement circuitry with a digital notch filter. This thesis presents a detailed and comprehensive overview of the existing power converter configurations developed for transformer-less WECS applications. Based on the developed 2 comparative benchmark factor (CBF), the merits and demerits of each power converter configuration in terms of the component counts and grid compliance have been presented. In terms of cost comparison, the three-stage power converter configuration is more cost-effective than the generatorconverter configuration. Furthermore, the cost-benefit analysis of deploying a transformer-less WECSs in a WPP is evaluated and compared with conventional WECS in a WPP based on power converter configurations and collection system. Overall, the total cost of the collection system of WPP with transformer-less WECSs is about 23% less than the total cost of WPP with conventional WECs. The derivation and theoretical analysis of the proposed five-level tapped inductor quasi-Z-source NNPC converter topology have been presented, emphasizing its operating principles, steady-state analysis, and deriving equations to calculate its inductance and capacitance values. Furthermore, the FPGA implementation of the proposed converter topology was verified experimentally with a developed prototype of the topology. The efficiency of the proposed converter topology has been evaluated by varying the switching frequency and loads. Furthermore, the proposed converter topology is more efficient than the five-level DC-DC converter with a five-level diode-clamped converter (DCC) topology under the three-stage power converter configuration. Also, the cost analysis of the proposed converter topology and the conventional converter topology shows that it is more economical to deploy the proposed converter topology at the grid side of a transformer-less WECS

    Franchising : the entrepreneurial paradox

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Techno-economic evaluation of five-level nested neutral point clamped converter topology for transformer-less connection of high-power wind energy conversion systems

    Get PDF
    Developers and operators are interested in improving the reliability and reducing the associated costs of wind power plants (WPPs) because of the continuous increase in the power capacity of wind energy conversion systems (WECSs) and the increasing development of WPPs. The electrical subsystem of the WPP experiences the highest failure rate and constitutes a significant proportion of its total cost. Reliability of the WECS can be increased and its cost reduced by eliminating the wind turbine transformer from the electrical subsystem. This study gives a techno-economic evaluation of a five-level nested neutral point clamped (NNPC) converter topology for transformer-less connection of high- power WECSs. The approach entailed the calculation of reliability of five-level NNPC converter topology deployed in the grid-side of a WECSs. This method presents a mathematical formula for deriving the reliability of a five-level NNPC converter topology by using the reliability block diagram and reliability estimation-based models in the military handbook (MIL-HDBK-217F). The cost analysis model shows that the total cost of the five-level diode clamped converter topology was higher than the five-level NNPC converter topology. The study could be extended by carrying out accurate modelling of the mission profile of the presented converter by using multi-domain simulation technique

    Abnormal Cortical Development after Premature Birth Shown by Altered Allometric Scaling of Brain Growth

    Get PDF
    BACKGROUND: We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment. METHODS AND FINDINGS: We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25–1.33), which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001) independent of intrauterine or postnatal somatic growth. CONCLUSIONS: Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery

    The burden of influenza in England by age and clinical risk group: a statistical analysis to inform vaccine policy.

    Get PDF
    OBJECTIVES: To assess the burden of influenza by age and clinical status and use this to inform evaluations of the age and risk-based influenza vaccination policy in the United Kingdom. METHODS: Weekly laboratory reports for influenza and 7 other respiratory pathogens were extracted from the national database and used in a regression model to estimate the proportion of acute respiratory illness outcomes attributable to each pathogen. RESULTS: Influenza accounted for ∼10% of the attributed respiratory admissions and deaths in hospital. Healthy children under five had the highest influenza admission rate (1.9/1000). The presence of co-morbidities increased the admission rate by 5.7 fold for 5-14 year olds (from 0.1 to 0.56/1000), the relative risk declining to 1.8 fold in 65+ year olds (from 0.46 to 0.84/1000). The majority (72%) of influenza-attributable deaths in hospital occurred in 65+ year olds with co-morbidities. Mortality in children under 15 years was low with around 12 influenza-attributable deaths in hospital per year in England; the case fatality rate was substantially higher in risk than non-risk children. Infants under 6 months had the highest consultation and admission rates, around 70/1000 and 3/1000 respectively. CONCLUSIONS: Additional strategies are needed to reduce the remaining morbidity and mortality in the high-risk and elderly populations, and to protect healthy children currently not offered the benefits of vaccination

    The Effect of Preterm Birth on Thalamic and Cortical Development

    Get PDF
    Preterm birth is a leading cause of cognitive impairment in childhood and is associated with cerebral gray and white matter abnormalities. Using multimodal image analysis, we tested the hypothesis that altered thalamic development is an important component of preterm brain injury and is associated with other macro- and microstructural alterations. T1- and T2-weighted magnetic resonance images and 15-direction diffusion tensor images were acquired from 71 preterm infants at term-equivalent age. Deformation-based morphometry, Tract-Based Spatial Statistics, and tissue segmentation were combined for a nonsubjective whole-brain survey of the effect of prematurity on regional tissue volume and microstructure. Increasing prematurity was related to volume reduction in the thalamus, hippocampus, orbitofrontal lobe, posterior cingulate cortex, and centrum semiovale. After controlling for prematurity, reduced thalamic volume predicted: lower cortical volume; decreased volume in frontal and temporal lobes, including hippocampus, and to a lesser extent, parietal and occipital lobes; and reduced fractional anisotropy in the corticospinal tracts and corpus callosum. In the thalamus, reduced volume was associated with increased diffusivity. This demonstrates a significant effect of prematurity on thalamic development that is related to abnormalities in allied brain structures. This suggests that preterm delivery disrupts specific aspects of cerebral development, such as the thalamocortical system

    Interneuron Development Is Disrupted in Preterm Brains With Diffuse White Matter Injury: Observations in Mouse and Human

    Get PDF
    Preterm brain injury, occurring in approximately 30% of infants born <32 weeks gestational age, is associated with an increased risk of neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). The mechanism of gray matter injury in preterm born children is unclear and likely to be multifactorial; however, inflammation, a high predictor of poor outcome in preterm infants, has been associated with disrupted interneuron maturation in a number of animal models. Interneurons are important for regulating normal brain development, and disruption in interneuron development, and the downstream effects of this, has been implicated in the etiology of neurodevelopmental disorders. Here, we utilize postmortem tissue from human preterm cases with or without diffuse white matter injury (WMI; PMA range: 23+2 to 28+1 for non-WMI group, 26+6 to 30+0 for WMI group, p = 0.002) and a model of inflammation-induced preterm diffuse white matter injury (i.p. IL-1β, b.d., 10 μg/kg/injection in male CD1 mice from P1–5). Data from human preterm infants show deficits in interneuron numbers in the cortex and delayed growth of neuronal arbors at this early stage of development. In the mouse, significant reduction in the number of parvalbumin-positive interneurons was observed from postnatal day (P) 10. This decrease in parvalbumin neuron number was largely rectified by P40, though there was a significantly smaller number of parvalbumin positive cells associated with perineuronal nets in the upper cortical layers. Together, these data suggest that inflammation in the preterm brain may be a contributor to injury of specific interneuron in the cortical gray matter. This may represent a potential target for postnatal therapy to reduce the incidence and/or severity of neurodevelopmental disorders in preterm infants

    Cortical Gray Matter Injury in Encephalopathy of Prematurity: Link to Neurodevelopmental Disorders

    Get PDF
    Preterm-born infants frequently suffer from an array of neurological damage, collectively termed encephalopathy of prematurity (EoP). They also have an increased risk of presenting with a neurodevelopmental disorder (e.g., autism spectrum disorder; attention deficit hyperactivity disorder) later in life. It is hypothesized that it is the gray matter injury to the cortex, in addition to white matter injury, in EoP that is responsible for the altered behavior and cognition in these individuals. However, although it is established that gray matter injury occurs in infants following preterm birth, the exact nature of these changes is not fully elucidated. Here we will review the current state of knowledge in this field, amalgamating data from both clinical and preclinical studies. This will be placed in the context of normal processes of developmental biology and the known pathophysiology of neurodevelopmental disorders. Novel diagnostic and therapeutic tactics required integration of this information so that in the future we can combine mechanism-based approaches with patient stratification to ensure the most efficacious and cost-effective clinical practice

    Self-employment amongst migrant groups: New evidence for England and Wales

    Get PDF
    Self-employment constitutes a vital part of the economy since entrepreneurs can provide employment not only for themselves but also for others. The link between self-employment and immigration is, however, complex, especially given the changing nature of self-employment. We investigate the evolving relationship between self-employment and immigration using recently released microdata from the 2011 Census for England and Wales. Our findings indicate large variations, with high self-employment rates observed for some groups with a long established history of migration to the UK (especially men born in Pakistan) and also for some groups who have arrived more recently (such as from the EU’s new member states). We further explore the differences, analyse variations by gender and identify key determining factors. In addition to certain socio-economic characteristics, it is found that migration-related influences, such as English language proficiency and period of arrival in the UK, play an important role for some groups
    corecore