26 research outputs found

    Ethnomedicinal landscape: distribution of used medicinal plant species in Nepal

    Get PDF
    Background The risk of losing traditional knowledge of medicinal plants and their use and conservation is very high. Documenting knowledge on distribution and use of medicinal plants by different ethnic groups and at spatial scale on a single platform is important from a conservation planning and management perspective. The sustainable use, continuous practice, and safeguarding of traditional knowledge are essential. Communication of such knowledge among scientists and policy makers at local and global level is equally important, as the available information at present is limited and scattered in Nepal. Methods In this paper, we aimed to address these shortcomings by cataloguing medicinal plants used by indigenous ethnic groups in Nepal through a systematic review of over 275 pertinent publications published between 1975 and July 2021. The review was complemented by field visits made in 21 districts. We determined the ethnomedicinal plants hotspots across the country and depicted them in heatmaps. Results The heatmaps show spatial hotspots and sites of poor ethnomedicinal plant use documentation, which is useful for evaluating the interaction of geographical and ethnobotanical variables. Mid-hills and mountainous areas of Nepal hold the highest number of medicinal plant species in use, which could be possibly associated with the presence of higher human population and diverse ethnic groups in these areas. Conclusion Given the increasing concern about losing medicinal plants due to changing ecological, social, and climatic conditions, the results of this paper may be important for better understanding of how medicinal plants in use are distributed across the country and often linked to specific ethnic groups.</p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Coronary Artery Disease Evaluation in Rheumatoid Arthritis (CADERA): Study protocol for a randomized controlled trial

    Get PDF
    Background: The incidence of cardiovascular disease (CVD) in rheumatoid arthritis (RA) is increased compared to the general population. Immune dysregulation and systemic inflammation are thought to be associated with this increased risk. Early diagnosis with immediate treatment and tight control of RA forms a central treatment paradigm. It remains unclear, however, whether using tumor necrosis factor inhibitors (TNFi) to achieve remission confer additional beneficial effects over standard therapy, especially on the development of CVD. Methods/Design: Coronary Artery Disease Evaluation in Rheumatoid Arthritis (CADERA) is a prospective cardiovascular imaging study that bolts onto an existing single-centre, randomized controlled trial, VEDERA (Very Early versus Delayed Etanercept in Rheumatoid Arthritis). VEDERA will recruit 120 patients with early, treatment-naïve RA, randomized to TNFi therapy etanercept (ETN) combined with methotrexate (MTX), or therapy with MTX with or without additional synthetic disease modifying anti-rheumatic drugs with escalation to ETN following a 'treat-to-target' regimen. VEDERA patients will be recruited into CADERA and undergo cardiac magnetic resonance (CMR) assessment with; cine imaging, rest/ stress adenosine perfusion, tissue-tagging, aortic distensibility, T1 mapping and late gadolinium imaging. Primary objectives are to detect the prevalence and change of cardiovascular abnormalities by CMR between TNFi and standard therapy over a 12-month period. All patients will enter an inflammatory arthritis registry for long-term follow-up. Discussion: CADERA is a multi-parametric study describing cardiovascular abnormalities in early, treatment-naïve RA patients, with assessment of changes at one year between early biological therapy and conventional therapy
    corecore