37 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Naloxone-precipitated morphine withdrawal behavior and brain IL-1beta expression: Comparison of different mouse strains

    No full text
    The development of opioid dependence involves classical neuronal opioid receptor activation and is due in part to engagement of glia causing a proinflammatory response. Such opioid-induced glial activation occurs, at least in part, through a non-classical opioid mechanism involving Toll-like-receptor 4 (TLR4). Among the immune factors released following the opioid-glia-TLR4 interaction, interleukin-1β (IL-1β) plays a prominent role. Previous animal behavioral studies have demonstrated significant heterogeneity of chronic morphine-induced tolerance and dependence between different mouse strains. The aim of this study was to investigate whether the heterogeneity of chronic opioid-induced IL-1β expression contributes to differences in opioid tolerance and withdrawal behaviors. Chronic morphine-induced tolerance and dependence were assessed in 3 inbred wild-type mouse strains (Balb/c, CBA, and C57BL/6) and 2 knockout strains (TLR4 and MyD88). Analysis of brain nuclei (medial prefrontal cortex, cortex, brain stem, hippocampus, and midbrain and diencephalon regions combined) revealed that, of inbred wild-type mice, there are significant main effects of morphine treatment on IL-1β expression in the brain regions analyzed (p<0.02 for all regions analyzed). A significant increase in hippocampal IL-1β expression was found in C57BL/6 mice after morphine treatment, whilst, a significant decrease was found in the mPFC region of wild-type Balb/c mice. Furthermore, the results of wild-type inbred strains demonstrated that the elevated hippocampal IL-1β expression is associated with withdrawal jumping behavior. Interestingly, knockout of TLR4, but not MyD88 protected against the development of analgesic tolerance. Gene sequence differences of IL - 1β and TLR4 genes alone did not explain the heterogeneity of dependence behavior between mouse strains. Together, these data further support the involvement of opioid-induced CNS immune signaling in dependence development. Moreover, this study demonstrated the advantages of utilizing multiple mouse strains and indicates that appropriate choice of mouse strains could enhance future research outcomes.Liang Liu, Janet K. Coller, Linda R. Watkins, Andrew A. Somogyi, Mark R. Hutchinso

    Sex differences in oncogenic mutational processes

    Get PDF
    Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Peer reviewe
    corecore