158 research outputs found

    Seismological structure of the 1.8 Ga Trans-Hudson Orogen of North America

    Get PDF
    Precambrian tectonic processes are debated: what was the nature and scale of orogenic events on the younger, hotter, and more ductile Earth? Northern Hudson Bay records the Paleoproterozoic collision between the Western Churchill and Superior plates—the ∼1.8 Ga Trans-Hudson Orogeny (THO)—and is an ideal locality to study Precambrian tectonic structure. Integrated field, geochronological, and thermobarometric studies suggest that the THO was comparable to the present-day Himalayan-Karakoram-Tibet Orogen (HKTO). However, detailed understanding of the deep crustal architecture of the THO, and how it compares to that of the evolving HKTO, is lacking. The joint inversion of receiver functions and surface wave data provides new Moho depth estimates and shear velocity models for the crust and uppermost mantle of the THO. Most of the Archean crust is relatively thin (∼39 km) and structurally simple, with a sharp Moho; upper-crustal wave speed variations are attributed to postformation events. However, the Quebec-Baffin segment of the THO has a deeper Moho (∼45 km) and a more complex crustal structure. Observations show some similarity to recent models, computed using the same methods, of the HKTO crust. Based on Moho character, present-day crustal thickness, and metamorphic grade, we support the view that southern Baffin Island experienced thickening during the THO of a similar magnitude and width to present-day Tibet. Fast seismic velocities at >10 km below southern Baffin Island may be the result of partial eclogitization of the lower crust during the THO, as is currently thought to be happening in Tibet

    A novel method to analyze leukocyte rolling behavior in vivo

    Get PDF
    Leukocyte endothelial cell interaction is a fundamentally important process in many disease states. Current methods to analyze such interactions include the parallel-plate flow chamber and intravital microscopy. Here, we present an improvement of the traditional intravital microscopy that allows leukocyte-endothelial cell interaction to be studied from the time the leukocyte makes its initial contact with the endothelium until it adheres to or detaches from the endothelium. The leukocyte is tracked throughout the venular tree with the aid of a motorized stage and the rolling and adhesive behavior is measured off-line. Because this method can involve human error, methods to automate the tracking procedure have been developed. This novel tracking method allows for a more detailed examination of leukocyte-endothelial cell interactions

    Physical activity for people living with dementia: carer outcomes and side effects from the perspectives of professionals and family carers

    Get PDF
    Adherence to physical activity is challenging for people living with dementia, and largely dependent on carers' involvement. Carers are likely to support physical activity based on their perceived balance between benefits and potential side effects of such intervention for both patients and themselves. Professionals also have a role in terms of optimising such interventions not only for people with dementia but also their carers.publishe

    Lesion detection in demoscopy images with novel density-based and active contour approaches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Automated assessment tools for dermoscopy images have become an important field of research mainly because of inter- and intra-observer variations in human interpretation. One of the most important steps in dermoscopy image analysis is the detection of lesion borders, since many other features, such as asymmetry, border irregularity, and abrupt border cutoff, rely on the boundary of the lesion. </p> <p>Results</p> <p>To automate the process of delineating the lesions, we employed Active Contour Model (ACM) and boundary-driven density-based clustering (BD-DBSCAN) algorithms on 50 dermoscopy images, which also have ground truths to be used for quantitative comparison. We have observed that ACM and BD-DBSCAN have the same border error of 6.6% on all images. To address noisy images, BD-DBSCAN can perform better delineation than ACM. However, when used with optimum parameters, ACM outperforms BD-DBSCAN, since ACM has a higher recall ratio.</p> <p>Conclusion</p> <p>We successfully proposed two new frameworks to delineate suspicious lesions with i) an ACM integrated approach with sharpening and ii) a fast boundary-driven density-based clustering technique. ACM shrinks a curve toward the boundary of the lesion. To guide the evolution, the model employs the exact solution <abbrgrp><abbr bid="B27">27</abbr></abbrgrp> of a specific form of the Geometric Heat Partial Differential Equation <abbrgrp><abbr bid="B28">28</abbr></abbrgrp>. To make ACM advance through noisy images, an improvement of the model’s boundary condition is under consideration. BD-DBSCAN improves regular density-based algorithm to select query points intelligently.</p

    Effect of Native American ancestry on iron-related phenotypes of Alabama hemochromatosis probands with HFE C282Y homozygosity

    Get PDF
    BACKGROUND: In age-matched cohorts of screening study participants recruited from primary care clinics, mean serum transferrin saturation values were significantly lower and mean serum ferritin concentrations were significantly higher in Native Americans than in whites. Twenty-eight percent of 80 Alabama white hemochromatosis probands with HFE C282Y homozygosity previously reported having Native American ancestry, but the possible effect of this ancestry on hemochromatosis phenotypes was unknown. METHODS: We compiled observations in these 80 probands and used univariate and multivariate methods to analyze associations of age, sex, Native American ancestry (as a dichotomous variable), report of ethanol consumption (as a dichotomous variable), percentage transferrin saturation and log(e )serum ferritin concentration at diagnosis, quantities of iron removed by phlebotomy to achieve iron depletion, and quantities of excess iron removed by phlebotomy. RESULTS: In a univariate analysis in which probands were grouped by sex, there were no significant differences in reports of ethanol consumption, transferrin saturation, log(e )serum ferritin concentration, quantities of iron removed to achieve iron depletion, and quantities of excess iron removed by phlebotomy in probands who reported Native American ancestry than in those who did not. In multivariate analyses, transferrin saturation (as a dependent variable) was not significantly associated with any of the available variables, including reports of Native American ancestry and ethanol consumption. The independent variable quantities of excess iron removed by phlebotomy was significantly associated with log(e )serum ferritin used as a dependent variable (p < 0.0001), but not with reports of Native American ancestry or reports of ethanol consumption. Log(e )serum ferritin was the only independent variable significantly associated with quantities of excess iron removed by phlebotomy used as a dependent variable (p < 0.0001) (p < 0.0001; ANOVA of regression). CONCLUSION: We conclude that the iron-related phenotypes of hemochromatosis probands with HFE C282Y homozygosity are similar in those with and without Native American ancestry reports

    Colorectal cancer risk assessment and screening recommendation: a community survey of healthcare providers' practice from a patient perspective

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Family history is a common risk factor for colorectal cancer (CRC), yet it is often underused to guide risk assessment and the provision of risk-appropriate CRC screening recommendation. The aim of this study was to identify from a patient perspective health care providers' current practice relating to: (i) assessment of family history of CRC; (ii) notification of "increased risk" to patients at "moderately/potentially high" familial risk; and (iii) recommendation that patients undertake CRC screening.</p> <p>Methods</p> <p>1592 persons aged 56-88 years randomly selected from the Hunter Community Study (HCS), New South Wales, Australia were mailed a questionnaire. 1117 participants (70%) returned a questionnaire.</p> <p>Results</p> <p>Thirty eight percent of respondents reported ever being asked about their family history of CRC. Ever discussing family history of CRC with a health care provider was significantly more likely to occur for persons with a higher level of education, who had ever received screening advice and with a lower physical component summary score. Fifty one percent of persons at "moderately/potentially high risk" were notified of their "increased risk" of developing CRC. Thirty one percent of persons across each level of risk had ever received CRC screening advice from a health care provider. Screening advice provision was significantly more likely to occur for persons who had ever discussed their family history of CRC with a health care provider and who were at "moderately/potentially high risk".</p> <p>Conclusions</p> <p>Effective interventions that integrate both the assessment and notification of familial risk of CRC to the wider population are needed. Systematic and cost-effective mechanisms that facilitate family history collection, risk assessment and provision of screening advice within the primary health care setting are required.</p

    The Iceland Microcontinent and a continental Greenland-Iceland-Faroe Ridge

    Get PDF
    The breakup of Laurasia to form the Northeast Atlantic Realm was the culmination of a long period of tectonic unrest extending back to the Late Palaeozoic. Breakup was prolonged and complex and disintegrated an inhomogeneous collage of cratons sutured by cross-cutting orogens. Volcanic rifted margins formed, which are blanketed by lavas and underlain variously by magma-inflated, extended continental crust and mafic high-velocity lower crust of ambiguous and probably partly continental provenance. New rifts formed by diachronous propagation along old zones of weakness. North of the Greenland-Iceland-Faroe Ridge the newly forming rift propagated south along the Caledonian suture. South of the Greenland-Iceland-Faroe Ridge it propagated north through the North Atlantic Craton along an axis displaced ~ 150 km to the west of the northern rift. Both propagators stalled where the confluence of the Nagssugtoqidian and Caledonian orogens formed a transverse barrier. Thereafter, the ~ 400-km-wide latitudinal zone between the stalled rift tips extended in a distributed, unstable manner along multiple axes of extension that frequently migrated or jumped laterally with shearing occurring between them in diffuse transfer zones. This style of deformation continues to the present day. It is the surface expression of underlying magma-assisted stretching of ductile mid- and lower continental crust which comprises the Icelandic-type lower crust that underlies the Greenland-Iceland-Faroe Ridge. This, and probably also one or more full-crustal-thickness microcontinents incorporated in the Ridge, are capped by surface lavas. The Greenland-Iceland-Faroe Ridge thus has a similar structure to some zones of seaward-dipping reflectors. The contemporaneous melt layer corresponds to the 3–10 km thick Icelandic-type upper crust plus magma emplaced in the ~ 10–30-km-thick Icelandic-type lower crust. This model can account for seismic and gravity data that are inconsistent with a gabbroic composition for Icelandic-type lower crust, and petrological data that show no reasonable temperature or source composition could generate the full ~ 40-km thickness of Icelandic-type crust observed. Numerical modeling confirms that extension of the continental crust can continue for many tens of Myr by lower-crustal flow from beneath the adjacent continents. Petrological estimates of the maximum potential temperature of the source of Icelandic lavas are up to 1450 °C, no more than ~ 100 °C hotter than MORB source. The geochemistry is compatible with a source comprising hydrous peridotite/pyroxenite with a component of continental mid- and lower crust. The fusible petrology, high source volatile contents, and frequent formation of new rifts can account for the true ~ 15–20 km melt thickness at the moderate temperatures observed. A continuous swathe of magma-inflated continental material beneath the 1200-km-wide Greenland-Iceland-Faroe Ridge implies that full continental breakup has not yet occurred at this latitude. Ongoing tectonic instability on the Ridge is manifest in long-term tectonic disequilibrium on the adjacent rifted margins and on the Reykjanes Ridge, where southerly migrating propagators that initiate at Iceland are associated with diachronous swathes of unusually thick oceanic crust. Magmatic volumes in the NE Atlantic Realm have likely been overestimated and the concept of a monogenetic North Atlantic Igneous Province needs to be reappraised. A model of complex, piecemeal breakup controlled by pre-existing structures that produces anomalous volcanism at barriers to rift propagation and distributes continental material in the growing oceans fits other oceanic regions including the Davis Strait and the South Atlantic and West Indian oceans

    The History of Communications and its Implications for the Internet

    Full text link

    The Solar Orbiter Science Activity Plan: translating solar and heliospheric physics questions into action

    Get PDF
    Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission’s science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit’s science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter’s SAP through a series of examples and the strategy being followed
    corecore