1,155 research outputs found

    Contributions to the Characterization and Mitigation of Rotorcraft Brownout

    Get PDF
    Rotorcraft brownout, the condition in which the flow field of a rotorcraft mobilizes sediment from the ground to generate a cloud that obscures the pilot's field of view, continues to be a significant hazard to civil and military rotorcraft operations. This dissertation presents methodologies for: (i) the systematic mitigation of rotorcraft brownout through operational and design strategies and (ii) the quantitative characterization of the visual degradation caused by a brownout cloud. In Part I of the dissertation, brownout mitigation strategies are developed through simulation-based brownout studies that are mathematically formulated within a numerical optimization framework. Two optimization studies are presented. The first study involves the determination of approach-to-landing maneuvers that result in reduced brownout severity. The second study presents a potential methodology for the design of helicopter rotors with improved brownout characteristics. The results of both studies indicate that the fundamental mechanisms underlying brownout mitigation are aerodynamic in nature, and the evolution of a ground vortex ahead of the rotor disk is seen to be a key element in the development of a brownout cloud. In Part II of the dissertation, brownout cloud characterizations are based upon the Modulation Transfer Function (MTF), a metric commonly used in the optics community for the characterization of imaging systems. The use of the MTF in experimentation is examined first, and the application of MTF calculation and interpretation methods to actual flight test data is described. The potential for predicting the MTF from numerical simulations is examined second, and an initial methodology is presented for the prediction of the MTF of a brownout cloud. Results from the experimental and analytical studies rigorously quantify the intuitively-known facts that the visual degradation caused by brownout is a space and time-dependent phenomenon, and that high spatial frequency features, i.e., fine-grained detail, are obscured before low spatial frequency features, i.e., large objects. As such, the MTF is a metric that is amenable to Handling Qualities (HQ) analyses

    On the fine structure of the quiet solar \Ca II K atmosphere

    Get PDF
    We investigate the morphological, dynamical, and evolutionary properties of the internetwork and network fine structure of the quiet sun at disk centre. The analysis is based on a ∼\sim6 h time sequence of narrow-band filtergrams centred on the inner-wing \Ca II K2v_{\rm 2v} reversal at 393.3 nm. The results for the internetwork are related to predictions derived from numerical simulations of the quiet sun. The average evolutionary time scale of the internetwork in our observations is 52 sec. Internetwork grains show a tendency to appear on a mesh-like pattern with a mean cell size of ∼\sim4-5 arcsec. Based on this size and the spatial organisation of the mesh we speculate that this pattern is related to the existence of photospheric downdrafts as predicted by convection simulations. The image segmentation shows that typical sizes of both network and internetwork grains are in the order of 1.6 arcs.Comment: 8 pages, 9 figure

    The contrast of magnetic elements in synthetic CH- and CN-band images of solar magnetoconvection

    Full text link
    We present a comparative study of the intensity contrast in synthetic CH-band and violet CN-band filtergrams computed from a high-resolution simulation of solar magnetoconvection. The underlying simulation has an average vertical magnetic field of 250 G with kG fields concentrated in its intergranular lanes, and is representative of a plage region. To simulate filtergrams typically obtained in CH- and CN-band observations we computed spatially resolved spectra in both bands and integrated these spectra over 1 nm FWHM filter functions centred at 430.5 nm and 388.3 nm, respectively. We find that the average contrast of magnetic bright points in the simulated filtergrams is lower in the CN-band by a factor of 0.96. This result strongly contradicts earlier semi-empirical modeling and recent observations, which both etimated that the bright-point contrast in the CN-band is \emph{higher} by a factor of 1.4. We argue that the near equality of the bright-point contrast in the two bands in the present simulation is a natural consequence of the mechanism that causes magnetic flux elements to be particularly bright in the CN and CH filtergrams, namely the partial evacuation of these elements and the concomitant weakening of molecular spectral lines in the filter passbands. We find that the RMS intensity contrast in the whole field-of-view of the filtergrams is 20.5% in the G band and 22.0% in the CN band and conclude that this slight difference in contrast is caused by the shorter wavelength of the latter. Both the bright-point and RMS intensity contrast in the CN band are sensitive to the precise choice of the central wavelength of the filter.Comment: 24 pages, 9 figures, submitted to Ap

    Voir Dire Examination and Automobile Insurance

    Get PDF

    The Power of Municipalities To Purchase Property by the Pledge of Receipts Plan

    Get PDF
    Case Commen
    • …
    corecore