135 research outputs found

    Measurement of the partial widths of the Z into up- and down-type quarks

    Full text link
    Using the entire OPAL LEP1 on-peak Z hadronic decay sample, Z -> qbarq gamma decays were selected by tagging hadronic final states with isolated photon candidates in the electromagnetic calorimeter. Combining the measured rates of Z -> qbarq gamma decays with the total rate of hadronic Z decays permits the simultaneous determination of the widths of the Z into up- and down-type quarks. The values obtained, with total errors, were Gamma u = 300 ^{+19}_{-18} MeV and Gamma d = 381 ^{+12}_{-12} MeV. The results are in good agreement with the Standard Model expectation.Comment: 22 pages, 5 figures, Submitted to Phys. Letts.

    Genuine Correlations of Like-Sign Particles in Hadronic Z0 Decays

    Get PDF
    Correlations among hadrons with the same electric charge produced in Z0 decays are studied using the high statistics data collected from 1991 through 1995 with the OPAL detector at LEP. Normalized factorial cumulants up to fourth order are used to measure genuine particle correlations as a function of the size of phase space domains in rapidity, azimuthal angle and transverse momentum. Both all-charge and like-sign particle combinations show strong positive genuine correlations. One-dimensional cumulants initially increase rapidly with decreasing size of the phase space cells but saturate quickly. In contrast, cumulants in two- and three-dimensional domains continue to increase. The strong rise of the cumulants for all-charge multiplets is increasingly driven by that of like-sign multiplets. This points to the likely influence of Bose-Einstein correlations. Some of the recently proposed algorithms to simulate Bose-Einstein effects, implemented in the Monte Carlo model PYTHIA, are found to reproduce reasonably well the measured second- and higher-order correlations between particles with the same charge as well as those in all-charge particle multiplets.Comment: 26 pages, 6 figures, Submitted to Phys. Lett.

    Leptonic and Semileptonic Decays of Charm and Bottom Hadrons

    Get PDF
    We review the experimental measurements and theoretical descriptions of leptonic and semileptonic decays of particles containing a single heavy quark, either charm or bottom. Measurements of bottom semileptonic decays are used to determine the magnitudes of two fundamental parameters of the standard model, the Cabibbo-Kobayashi-Maskawa matrix elements VcbV_{cb} and VubV_{ub}. These parameters are connected with the physics of quark flavor and mass, and they have important implications for the breakdown of CP symmetry. To extract precise values of Vcb|V_{cb}| and Vub|V_{ub}| from measurements, however, requires a good understanding of the decay dynamics. Measurements of both charm and bottom decay distributions provide information on the interactions governing these processes. The underlying weak transition in each case is relatively simple, but the strong interactions that bind the quarks into hadrons introduce complications. We also discuss new theoretical approaches, especially heavy-quark effective theory and lattice QCD, which are providing insights and predictions now being tested by experiment. An international effort at many laboratories will rapidly advance knowledge of this physics during the next decade.Comment: This review article will be published in Reviews of Modern Physics in the fall, 1995. This file contains only the abstract and the table of contents. The full 168-page document including 47 figures is available at http://charm.physics.ucsb.edu/papers/slrevtex.p

    Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays

    Full text link
    The lifetime and oscillation frequency of the B0 meson has been measured using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP. The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the production flavour of the B0 mesons was determined using a combination of tags from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d = 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.

    Bs-Bs.bar Mixing, CP Violation and Extraction of CKM Phases from Untagged Bs Data Samples

    Full text link
    A width difference of the order of 20\% has previously been predicted for the two mass eigenstates of the BsB_s meson. The dominant contributor to the width difference is the bccˉsb\rightarrow c\bar c s transition, with final states common to both BsB_s and Bs\overline{B}_s. All current experimental analyses fit the time-dependences of flavor-specific BsB_s-modes to a single exponential, which essentially determines the average BsB_s lifetime. We stress that the same data sample allows even the measurement of the width difference. To see that, this note reviews the time-dependent formulae for tagged BsB_s decays, which involve rapid oscillatory terms depending on Δmt\Delta mt. In untagged data samples the rapid oscillatory terms cancel. Their time-evolutions depend only on the much more slowly varying exponential falloffs. We discuss in detail the extraction of the two widths, and identify the large (small) CP-even (-odd) rate with that of the light (heavy) BsB_s mass eigenstate. It is demonstrated that decay length distributions of some \underline{untagged} BsB_s modes, such as ρ0KS,  Ds()±K()\rho^0 K_S, \; D_s^{(*)\pm}K^{(*)\mp}, can be used to extract the notoriously difficult CKM unitarity triangle angle γ\gamma. Sizable CP violating effects may be seen with such untagged BsB_s data samples. Listing ΔΓ\Delta\Gamma as an observable allows for additional important standard model constraints. Within the CKM model, the ratio ΔΓ/Δm\Delta\Gamma/ \Delta m involves no CKM parameters, only a QCD uncertainty. Thus a measurement of ΔΓ  (Δm)\Delta\Gamma \;(\Delta m) would predict Δm  (ΔΓ)\Delta m \;(\Delta\Gamma ), up to the QCD uncertainty. A large width difference would automatically solve the puzzle of the number of charmed hadrons per BB decay in favor of theory. We also derive an upper limit of (ΔΓ/Γ)Bs< 0.3(| \Delta\Gamma | / \Gamma)_{B_s} <~ 0.3. Further, we must abandon the notion of branching fractions of BsfB_s\rightarrow f, and instead consider B(BL(H)0f) B(B^0_{L(H)}\rightarrow f), in analogy to the neutral kaons.Comment: 46 pages, revte

    Search for Associated Production of Massive States Decaying into Two Photonsin e+e- Annihilations at sqrt(s) = 88-209 GeV

    Full text link
    A search is performed for production of short-lived particles in e+e- -> XY, with X -> gamma gamma and Y -> ffbar, for scalar X and scalar or vector Y. Model-independent limits in the range of 25-60 femtobarns are presented on sigma (e+e- -> XY) x B(X -> ffbar) for centre-of-mass energies in the range 205-207 GeV. The data from all LEP centre-of-mass energies 88-209 GeV are also interpreted in the context of fermiophobic Higgs boson models, for which a lower mass limit of 105.5 GeV is obtained for a "benchmark" fermiophobic Higgs boson.Comment: 17 pages, 4 figure

    Longitudinal Imaging of the Ageing Mouse

    Get PDF
    Several non-invasive imaging techniques are used to investigate the effect of pathologies and treatments over time in mouse models. Each preclinical in vivo technique provides longitudinal and quantitative measurements of changes in tissues and organs, which are fundamental for the evaluation of alterations in phenotype due to pathologies, interventions and treatments. However, it is still unclear how these imaging modalities can be used to study ageing with mice models. Almost all age related pathologies in mice such as osteoporosis, arthritis, diabetes, cancer, thrombi, dementia, to name a few, can be imaged in vivo by at least one longitudinal imaging modality. These measurements are the basis for quantification of treatment effects in the development phase of a novel treatment prior to its clinical testing. Furthermore, the non-invasive nature of such investigations allows the assessment of different tissue and organ phenotypes in the same animal and over time, providing the opportunity to study the dysfunction of multiple tissues associated with the ageing process. This review paper aims to provide an overview of the applications of the most commonly used in vivo imaging modalities used in mouse studies: micro-computed-tomography, preclinical magnetic-resonance-imaging, preclinical positron-emission-tomography, preclinical single photon emission computed tomography, ultrasound, intravital microscopy, and whole body optical imaging

    Dexamethasone intravitreal implant in previously treated patients with diabetic macular edema : Subgroup analysis of the MEAD study

    Get PDF
    Background: Dexamethasone intravitreal implant 0.7 mg (DEX 0.7) was approved for treatment of diabetic macular edema (DME) after demonstration of its efficacy and safety in the MEAD registration trials. We performed subgroup analysis of MEAD study results to evaluate the efficacy and safety of DEX 0.7 treatment in patients with previously treated DME. Methods: Three-year, randomized, sham-controlled phase 3 study in patients with DME, best-corrected visual acuity (BCVA) of 34.68 Early Treatment Diabetic Retinopathy Study letters (20/200.20/50 Snellen equivalent), and central retinal thickness (CRT) 65300 \u3bcm measured by time-domain optical coherence tomography. Patients were randomized to 1 of 2 doses of DEX (0.7 mg or 0.35 mg), or to sham procedure, with retreatment no more than every 6 months. The primary endpoint was 6515-letter gain in BCVA at study end. Average change in BCVA and CRT from baseline during the study (area-under-the-curve approach) and adverse events were also evaluated. The present subgroup analysis evaluated outcomes in patients randomized to DEX 0.7 (marketed dose) or sham based on prior treatment for DME at study entry. Results: Baseline characteristics of previously treated DEX 0.7 (n = 247) and sham (n=261) patients were similar. In the previously treated subgroup, mean number of treatments over 3 years was 4.1 for DEX 0.7 and 3.2 for sham, 21.5 % of DEX 0.7 patients versus 11.1 % of sham had 6515-letter BCVA gain from baseline at study end (P = 0.002), mean average BCVA change from baseline was +3.2 letters with DEX 0.7 versus +1.5 letters with sham (P = 0.024), and mean average CRT change from baseline was -126.1 \u3bcm with DEX 0.7 versus -39.0 \u3bcm with sham(P < 0.001). Cataract-related adverse events were reported in 70.3 % of baseline phakic patients in the previously treated DEX 0.7 subgroup; vision gains were restored following cataract surgery. Conclusions: DEX 0.7 significantly improved visual and anatomic outcomes in patients with DME previously treated with laser, intravitreal anti-vascular endothelial growth factor, intravitreal triamcinolone acetonide, or a combination of these therapies. The safety profile of DEX 0.7 in previously treated patients was similar to its safety profile in the total study population

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Lipid-induced mononuclear cell cytokine secretion in the development of metabolic aberration and androgen excess in polycystic ovary syndrome

    No full text
    Study question: What is the effect of saturated fat ingestion on mononuclear cell (MNC) TNFα, IL-6 and IL-1β secretion and circulating IL-6 levels in women with polycystic ovary syndrome (PCOS)? Summary answer: Women with PCOS exhibit increases in MNC-derived TNFα, IL-6 and IL-1β secretion and circulating IL-6 following saturated fat ingestion even in the absence of obesity, and these increases are linked to metabolic aberration and androgen excess. What is known already: Cytokine excess and metabolic aberration is often present in PCOS. Study design, size, duration: A cross-sectional design was used in this study of 38 reproductive-age women. Participants/materials, setting, methods: Groups of 19 reproductive-age women with PCOS (10 lean, 9 obese) and 19 ovulatory controls (10 lean, 9 obese) participated in this study that was performed at a tertiary academic medical centre. TNFα, IL-6 and IL-1β secretion was measured from cultured MNC, and IL-6 was measured in plasma from blood sampling while fasting and 2, 3 and 5 h after saturated fat ingestion. Insulin sensitivity was determined using the Matsuda index following an oral glucose tolerance test. Androgen secretion was evaluated with blood sampling while fasting and 24, 48 and 72 h after an HCG injection. Main results and the role of chance: Lean and obese women with PCOS exhibited lipid-induced incremental AUC increases in MNC-derived TNFα (489-611%), IL-6 (333-398%) and IL-1β (560-695%) secretion and in plasma IL-6 levels (426-474%), in contrast with lean control subjects. In both PCOS groups, insulin sensitivity was lower (42-49%) and androgen secretion after HCG injection was greater (63-110%) compared with control subjects. The MNC-derived TNFα, IL-6 and IL-1β and circulating IL-6 responses were inversely associated with insulin sensitivity and directly associated with fasting lipids and androgen secretion after HCG injection. Limitations, reasons for caution: The sample size of each of the four study groups was modest following group assignment of subjects by body mass. Wider implications of the findings: This study showcases the unique pro-inflammatory contribution of circulating MNC in the development of metabolic aberration and androgen excess in PCOS. Study funding/competing interest(s): This research was supported by grant R01 DK107605 to F.G. from the National Institutes of Health, the Indiana Clinical and Translational Sciences Institute Clinical Research Center which is funded in part by grant UL1TR002529 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award, and the Indiana University Center for Diabetes and Metabolic Diseases funded by grant P30 DK097512 from the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. No conflicts of interest, financial or otherwise, are declared by the authors
    corecore