83 research outputs found

    Evaluation the Performance Efficiency of Manufactured, Modified and Assembled Combine Implement and Studying It’s Impact on Some Soil Physical Properties and Total Costs

    Full text link
    The experiment was conducted to evaluate the efficiency performance of the combine implement which manufactured and assembled locally and studying it\u27s effect on some soil physical properties and total costs in one of the Agricultural College University of Baghdad Experimental Fields in loamy soil, 2017. Brazilian Massy Ferguson Tractor (MF-650) was used with the combine implement as a machinery unit. Three machinery unit speeds included 3.15, 4.60 and 6.10 km/h and seedling treatments included manufactured combine implement, seedling and fertilizer implement and manual seedling were used in this experiment. Soil bulk density, soil moisture content, amount of added water and total costs were measured. Nested design under randomized complete block design with three replications was used in this experiment. Least significant differences (LSD = 0.05) level under 0.05 probability was used to compare treatment means. The results can be summarized as following: 1. Incrased machinery unit speeds from 3.15 to 4.60 km.h-1 led to significant increase in soil bulk density from 1.30 to 1.36 Mg.mˉ³and significant increase in soil moisture content from 0.18 to 0.20 %. 2. Manufactured combine implement treatment was superior in getting less soil bulk density stood 1.22 Mg.mˉ³ higher soil moisture content stood 0.22%.and less amount of added water during the season stood 1103.43 mm. and less costs stood 796370 Iraqi Dinars. 3. The interaction between 3.15 km.h-1machinery speed and manufactured combine implement got less soil bulk density stood 1.19 Mg.mˉ³, while the interference between 6.1 km.h-1 machinery unit speed and manufactured equipment was superior in obtaining a higher moisture content stood 0.229%. 4. Using the locally manufacturing modified combine implement for primary and secondary tillage, shallow furrow opener, seedling and fertilization in one time was successfully done in this study with high performance efficiency

    Sonochemical/hydration-dehydration synthesis of Pt-TiO2 NPs/decorated carbon nanotubes with enhanced photocatalytic hydrogen production activity

    Get PDF
    Modified Pt-TiO2 NPs/decorated carbon nanotubes were synthesized utilizing sonochemical/hydration-dehydration techniques. Pt was loaded on TiO2 by a photodeposition method keeping in mind the end goal to achieve electron-hole pair separation and promote the surface reaction. The morphological and basic properties of Pt-TiO2/fCNTs were investigated by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and Raman spectroscopy. The selected area electron diffraction (SAED) patterns of Pt-TiO2/fCNTs were obtained utilizing TEM-based energy dispersive X-ray spectroscopy (EDXS) analysis. It was found that the TiO2 nanoparticles were uniformly distributed on the fCNTs, and the Pt particles were decorated on the surface of TiO2/fCNTs. The photocatalytic hydrogen production activity of the Pt(0.5%)-TiO2/fCNTs(0.5%) nanoparticle composites was investigated using a sacrificial agent methanol solution. Pt-loaded TiO2 demonstrated a hydrogen evolution rate around 20 times that of TiO2/fCNTs(0.5%) (fSWCNTs, fMWCNTs). When compared with platinized TiO2 in methanol, which was utilized as a control material, Pt-TiO2/fCNTs demonstrated an almost 2-fold increment in hydrogen generation

    Choosing best practices for managing impacts of trawl fishing on seabed habitats and biota

    Get PDF
    Bottom trawling accounts for almost one quarter of global fish landings but may also have significant and unwanted impacts on seabed habitats and biota. Management measures and voluntary industry actions can reduce these impacts, helping to meet sustainability objectives for fisheries, conservation and environmental management. These include changes in gear design and operation of trawls, spatial controls, impact quotas and effort controls. We review nine different measures and actions and use published studies anda simple conceptual model to evaluate and compare their performance. The risks and benefits of these management measures depend on the extent to which the fishery is already achieving management objectives for target stocks and the characteristics of the management system that is already in place. We offer guidance on identifying best practices for trawl-fisheries management and show that best practices and their likelihood of reducing trawling impacts depend on local, national and regional management objectives and priorities, societal values and resources for implementation. There is no universalbest practice, and multiple management measures and industry actions are required to meet sustainability objectives and improve trade-offs between food production and environmental protection

    Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae)

    Get PDF
    Phenylalanine ammonia lyase (PAL) is the first entry enzyme of the phenylpropanoid pathway producing phenolics, widespread constituents of plant foods and beverages, including chlorogenic acids, polyphenols found at remarkably high levels in the coffee bean and long recognized as powerful antioxidants. To date, whereas PAL is generally encoded by a small gene family, only one gene has been characterized in Coffea canephora (CcPAL1), an economically important species of cultivated coffee. In this study, a molecular- and bioinformatic-based search for CcPAL1 paralogues resulted successfully in identifying two additional genes, CcPAL2 and CcPAL3, presenting similar genomic structures and encoding proteins with close sequences. Genetic mapping helped position each gene in three different coffee linkage groups, CcPAL2 in particular, located in a coffee genome linkage group (F) which is syntenic to a region of Tomato Chromosome 9 containing a PAL gene. These results, combined with a phylogenetic study, strongly suggest that CcPAL2 may be the ancestral gene of C. canephora. A quantitative gene expression analysis was also conducted in coffee tissues, showing that all genes are transcriptionally active, but they present distinct expression levels and patterns. We discovered that CcPAL2 transcripts appeared predominantly in flower, fruit pericarp and vegetative/lignifying tissues like roots and branches, whereas CcPAL1 and CcPAL3 were highly expressed in immature fruit. This is the first comprehensive study dedicated to PAL gene family characterization in coffee, allowing us to advance functional studies which are indispensable to learning to decipher what role this family plays in channeling the metabolism of coffee phenylpropanoids

    A well-kept treasure at depth: precious red coral rediscovered in Atlantic deep coral gardens (SW Portugal) after 300 years

    Get PDF
    The highly valuable red coral Corallium rubrum is listed in several Mediterranean Conventions for species protection and management since the 1980s. Yet, the lack of data about its Atlantic distribution has hindered its protection there. This culminated in the recent discovery of poaching activities harvesting tens of kg of coral per day from deep rocky reefs off SW Portugal. Red coral was irregularly exploited in Portugal between the 1200s and 1700s, until the fishery collapsed. Its occurrence has not been reported for the last 300 years.info:eu-repo/semantics/publishedVersio

    Metabolic engineering of novel lignin in biomass crops

    Get PDF
    Lignin, a phenolic polymer in the secondary wall, is the major cause of lignocellulosic biomass recalcitrance to efficient industrial processing. From an applications perspective, it is desirable that second-generation bioenergy crops have lignin that is readily degraded by chemical pretreatments but still fulfill its biological role in plants. Because plants can tolerate large variations in lignin composition, often without apparent adverse effects, substitution of some fraction of the traditional monolignols by alternative monomers through genetic engineering is a promising strategy to tailor lignin in bioenergy crops. However, successful engineering of lignin incorporating alternative monomers requires knowledge about phenolic metabolism in plants and about the coupling properties of these alternative monomers. Here, we review the current knowledge about lignin biosynthesis and the pathways towards the main phenolic classes. In addition, the minimal requirements are defined for molecules that, upon incorporation into the lignin polymer, make the latter more susceptible to biomass pretreatment. Numerous metabolites made by plants meet these requirements, and several have already been tested as monolignol substitutes in biomimetic systems. Finally, the status of detection and identification of compounds by phenolic profiling is discussed, as phenolic profiling serves in pathway elucidation and for the detection of incorporation of alternative lignin monomers

    Artisanal fish fences pose broad and unexpected threats to the tropical coastal seascape

    Get PDF
    Gear restrictions are an important management tool in small-scale tropical fisheries, improving sustainability and building resilience to climate change. Yet to identify the management challenges and complete footprint of individual gears, a broader systems approach is required that integrates ecological, economic and social sciences. Here we apply this approach to artisanal fish fences, intensively used across three oceans, to identify a previously underrecognized gear requiring urgent management attention. A longitudinal case study shows increased effort matched with large declines in catch success and corresponding reef fish abundance. We find fish fences to disrupt vital ecological connectivity, exploit > 500 species with high juvenile removal, and directly damage seagrass ecosystems with cascading impacts on connected coral reefs and mangroves. As semi-permanent structures in otherwise open-access fisheries, they create social conflict by assuming unofficial and unregulated property rights, while their unique high-investment-low-effort nature removes traditional economic and social barriers to overfishing
    corecore