101 research outputs found

    Fully covered self-expanding metal stents placed temporarily in the bile duct: safety profile and histologic classification in a porcine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fully covered Self-Expanding metal stents (FCSEMS) have been shown efficacious in palliating malignant biliary obstructions. There is little data analyzing mucosal response to their temporary placement in the bile duct.</p> <p>Methods</p> <p>Ten mini pigs underwent endoscopic placement of a FCSEMS (Wallflex, Boston Scientific). FCSEMS were kept in place for three months. At the end of the 3 months, FCSEMS were removed endoscopically. Five pigs were euthanized and their bile ducts harvested. The other five were kept alive for another month post removal. A single pathologist, created a scoring system (to determine degree of inflammation, fibrosis, and epithelial injury), examined all specimens in a blinded fashion.</p> <p>Results</p> <p>Four FCSEMS spontaneously migrated in the duodenum. On post mortem examination, mild mucosal thickness was noted in three bile duct specimens while superficial inflammation of the bile duct was noted in five animals. Histologic examination of the bile duct revealed focal acute inflammation in both groups. For the 5 animals euthanized immediately after stent removal, there was a tendency to have superficial mucosal erosion and fibrosis. In contrast, increased chronic inflammation was more commonly seen in the animals 1 month post stent removal, with all animals in this group showing moderate degrees of mononuclear inflammatory cell mucosal infiltrates. No severe inflammatory or fibrotic duct injury was observed in any of the study animals, with degree of injury graded as mild to moderate.</p> <p>Conclusion</p> <p>FCSEMS appear to induce minimal tissue overgrowth or fibrosis post placement. Ease of removability and no significant histologic injury are advantages noted with FCSEMS., however, further studies are needed to evaluate treating benign biliary strictures with FCSEMS in humans.</p

    The Association of Cardiometabolic, Diet and Lifestyle Parameters With Plasma Glucagon-like Peptide-1: An IMI DIRECT Study

    Get PDF
    \ua9 The Author(s) 2024. Published by Oxford University Press on behalf of the Endocrine Society.Context: The role of glucagon-like peptide-1 (GLP-1) in type 2 diabetes (T2D) and obesity is not fully understood. Objective: We investigate the association of cardiometabolic, diet, and lifestyle parameters on fasting and postprandial GLP-1 in people at risk of, or living with, T2D. Methods: We analyzed cross-sectional data from the two Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohorts, cohort 1 (n = 2127) individuals at risk of diabetes; cohort 2 (n = 789) individuals with new-onset T2D. Results: Our multiple regression analysis reveals that fasting total GLP-1 is associated with an insulin-resistant phenotype and observe a strong independent relationship with male sex, increased adiposity, and liver fat, particularly in the prediabetes population. In contrast, we showed that incremental GLP-1 decreases with worsening glycemia, higher adiposity, liver fat, male sex, and reduced insulin sensitivity in the prediabetes cohort. Higher fasting total GLP-1 was associated with a low intake of wholegrain, fruit, and vegetables in people with prediabetes, and with a high intake of red meat and alcohol in people with diabetes. Conclusion: These studies provide novel insights into the association between fasting and incremental GLP-1, metabolic traits of diabetes and obesity, and dietary intake, and raise intriguing questions regarding the relevance of fasting GLP-1 in the pathophysiology T2D

    Pharmacological agents for preventing morbidity associated with the haemodynamic response to tracheal intubation

    Get PDF
    Background: Several drugs have been used in attenuating or obliterating the response associated with laryngoscopy and tracheal intubation. These changes are of little concern in relatively healthy patients but can lead to morbidity and mortality in the high risk patient population.Objectives: The primary objective of this review was to determine the effectiveness of pharmacological agents in preventing the morbidity and mortality resulting from the haemodynamic changes in response to laryngoscopy and tracheal intubation in adult patients aged 18 years and above who were undergoing elective surgery in the operating room setting.SEARCH Methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2011, Issue 6), MEDLINE (1950 to June 2011), EMBASE (1980 to June 2011), and the bibliographies of published studies. We reran our search from June 2011 to December 2012 and will deal with these studies when we update the review.SELECTION CRITERIA: We included randomized controlled trials (RCTs) that compared a drug used as an intervention for preventing or attenuating the haemodynamic response to tracheal intubation to a control group, and that mentioned mortality, major morbidity, arrhythmia or electrocardiogram (ECG) evidence of ischaemia in the methodology, results, or discussion section of the reports.DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial quality and extracted the outcome data.MAIN Results: We included 72 RCTs. The included trials studied the effects of 32 drugs belonging to different pharmacological groups. Only two trials mentioned the primary outcome of morbidity and mortality related to the haemodynamic response to tracheal intubation. Of the secondary outcomes, 40 of the included trials observed arrhythmia only, 11 observed myocardial ischaemia only and 20 observed both arrhythmias and myocardial ischaemia. Arrhythmias were observed in 2932 participants and myocardial ischaemia in 1616 participants. Arrhythmias were observed in 134 out of 993 patients in the control group compared to 80 out of 1939 in the intervention group. The risk of arrhythmias was significantly reduced with pharmacological interventions in the pooled data (Peto odds ratio (OR) 0.19, 95% CI 0.14 to 0.26, P \u3c 0.00001, I(2)= 47%). Local anaesthetics, calcium channel blockers, beta blockers and narcotics reduced the risk of arrhythmia in the intervention group compared to the control group. Myocardial ischaemia was observed in 21 out of 604 patients in the control group compared to 10 out of 1012 in the treatment group; the result was statistically significant (Peto OR 0.45, 95% CI 0.22 to 0.92, P = 0.03, I(2) = 19%). However, in subgroup analysis only local anaesthetics significantly reduced the ECG changes indicating ischaemia, but this evidence came from one study. The majority of the studies had a negative outcome. Hypotension and bradycardia were reported with 40 g kg(-1) intravenous alfentanil, chest rigidity with 75 ug kg(-1) alfentanil, and increased bronchomotor tone with sympathetic blockers.There were 17 studies which included high risk patients. Pharmacological treatment in this group resulted in the reduction of arrhythmias when the data from nine trials looking at arrhythmias were pooled (Peto OR 0.18, 95% CI 0.05 to 0.59, P = 0.005, I(2) = 80%). The analysis from four studies was not included. Three of these trials looked at the effect of sympathetic blockers but arrhythmias or myocardial ischaemia was observed throughout the perioperative period in two studies and some patients had arrhythmias due to atropine premedication in the third study. In the fourth study the authors mentioned myocardial ischaemia in the objectives section but did not report it in the results.AUTHORS\u27 CONCLUSIONS: The risk of arrhythmias associated with tracheal intubation was significantly reduced with pre-induction administration of local anaesthetics, calcium channel blockers, beta blockers and narcotics compared to placebo. Pharmacological intervention also reduced the risk of ECG evidence of myocardial ischaemia in the pooled data. Lignocaine pretreatment showed a significant effect but evidence came from one study only. The data suggested that there may be a reduction in ECG evidence of myocardial ischaemia with beta blocker pretreatment but this difference was not statistically significant. There is a need to focus on outcomes rather than haemodynamic measurements alone when studying this response in future trials

    Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies

    Full text link
    Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic cross-section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03-1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics

    Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000-2021: a systematic analysis from the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Previous global analyses, with known underdiagnosis and single cause per death attribution systems, provide only a small insight into the suspected high population health effect of sickle cell disease. Completed as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, this study delivers a comprehensive global assessment of prevalence of sickle cell disease and mortality burden by age and sex for 204 countries and territories from 2000 to 2021. METHODS: We estimated cause-specific sickle cell disease mortality using standardised GBD approaches, in which each death is assigned to a single underlying cause, to estimate mortality rates from the International Classification of Diseases (ICD)-coded vital registration, surveillance, and verbal autopsy data. In parallel, our goal was to estimate a more accurate account of sickle cell disease health burden using four types of epidemiological data on sickle cell disease: birth incidence, age-specific prevalence, with-condition mortality (total deaths), and excess mortality (excess deaths). Systematic reviews, supplemented with ICD-coded hospital discharge and insurance claims data, informed this modelling approach. We employed DisMod-MR 2.1 to triangulate between these measures-borrowing strength from predictive covariates and across age, time, and geography-and generated internally consistent estimates of incidence, prevalence, and mortality for three distinct genotypes of sickle cell disease: homozygous sickle cell disease and severe sickle cell β-thalassaemia, sickle-haemoglobin C disease, and mild sickle cell β-thalassaemia. Summing the three models yielded final estimates of incidence at birth, prevalence by age and sex, and total sickle cell disease mortality, the latter of which was compared directly against cause-specific mortality estimates to evaluate differences in mortality burden assessment and implications for the Sustainable Development Goals (SDGs). FINDINGS: Between 2000 and 2021, national incidence rates of sickle cell disease were relatively stable, but total births of babies with sickle cell disease increased globally by 13·7% (95% uncertainty interval 11·1-16·5), to 515 000 (425 000-614 000), primarily due to population growth in the Caribbean and western and central sub-Saharan Africa. The number of people living with sickle cell disease globally increased by 41·4% (38·3-44·9), from 5·46 million (4·62-6·45) in 2000 to 7·74 million (6·51-9·2) in 2021. We estimated 34 400 (25 000-45 200) cause-specific all-age deaths globally in 2021, but total sickle cell disease mortality burden was nearly 11-times higher at 376 000 (303 000-467 000). In children younger than 5 years, there were 81 100 (58 800-108 000) deaths, ranking total sickle cell disease mortality as 12th (compared to 40th for cause-specific sickle cell disease mortality) across all causes estimated by the GBD in 2021. INTERPRETATION: Our findings show a strikingly high contribution of sickle cell disease to all-cause mortality that is not apparent when each death is assigned to only a single cause. Sickle cell disease mortality burden is highest in children, especially in countries with the greatest under-5 mortality rates. Without comprehensive strategies to address morbidity and mortality associated with sickle cell disease, attainment of SDG 3.1, 3.2, and 3.4 is uncertain. Widespread data gaps and correspondingly high uncertainty in the estimates highlight the urgent need for routine and sustained surveillance efforts, further research to assess the contribution of conditions associated with sickle cell disease, and widespread deployment of evidence-based prevention and treatment for those with sickle cell disease. FUNDING: Bill & Melinda Gates Foundation

    Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults

    Get PDF
    Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.Peer reviewe

    Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations : A transethnic genome-wide meta-analysis

    Get PDF
    Background Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes. Methods & findings Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95% CI 1.04-1.06, per HbA1c-raising allele, p = 3 x 10-29); whereas GS-E was not (OR = 1.00, 95% CI 0.99-1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI 0.66-0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38-0.97) in homozygous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI0.55-0.74) of African American adults with T2Dto remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants. Conclusions As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.Peer reviewe

    Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes

    Get PDF
    We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P &lt; 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.</p
    corecore