30 research outputs found

    An ENU-Induced Mutation of Nrg1 Causes Dilated Pupils and a Reduction in Muscarinic Receptors in the Sphincter Pupillae

    Get PDF
    BACKGROUND: N-ethyl-N-nitrosourea (ENU)-induced mutagenesis is a powerful tool for the study of gene function and the generation of human disease models. A large number of mouse mutants obtained by ENU-induced mutagenesis with a variety of phenotypes have been recovered. However, after genetic confirmation testing, only approximately 50% of the abnormal phenotypes were found to be heritable. METHODOLOGY/PRINCIPAL FINDINGS: A mouse mutant, Dp1, with a dilated pupil phenotype was induced with an N-ethyl-N-nitrosourea (ENU) mutagenesis strategy. Sequence analysis for Nrg1 reveals a G>A base substitution that flanks exon E59, encoding for an EGFβ domain, in the 5' splice donor site. The mutation affects but does not abolish the splicing of EGFβ-type Nrg1 mRNA in Dp1 mice and produces several different transcripts by activating other, cryptic splice sites. These types of protein isoforms are expected, and the result shows that, in the mutant, the effect is a decrease in but not an elimination of the high affinity EGFβ-type Nrg1 isoforms. This is partially compensated for by an increase in expression of the low affinity alpha forms or inactive proteins, suggesting that the mutation results in a hypomorphic allele. Interestingly, genetic model testing shows that Dp1 is a mutation that results in a dilated pupil phenotype that is inherited with very low penetrance when heterozygous and with complete penetrance when homozygous. Pharmacological and immunohistochemical tests show a reduction of muscarinic (M) receptors in the sphincter pupillae of Dp1 mice, which is a major cause of dilated pupils. CONCLUSIONS/SIGNIFICANCE: This study is the first report of an Nrg1 mutation being associated with a dilated pupil phenotype and the reduction of M receptors. This report may help in establishing more mutant mouse lines and models of human genetic disease and can be applied to other organisms. Dp1 mice are a valuable resource for the further clarification of Nrg1 biological function

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    A randomized, double-blind, dose-comparison study of weekly interferon beta-1a in relapsing MS

    No full text
    Background: Interferon beta-1a (IFNbeta-1a; Avonex) is effective for the treatment of relapsing MS; however, the optimal dose of IFNbeta-1a is not known. Objective: To determine whether IFNbeta-1a 60 mug IM once weekly is more effective than IFNbeta-1a 30 mug IM once weekly in reducing disability progression in relapsing MS. Methods: In a double-blind, parallel-group, dose-comparison study, 802 patients with relapsing MS from 38 centers in Europe were randomized to IFNbeta-1a 30 mug (n = 402) or 60 mug (n = 400) IM once weekly for greater than or equal to36 months. The primary endpoint was disability progression, defined as time to a sustained increase of greater than or equal to1.0 point on the Expanded Disability Status Scale (EDSS) persisting for 6 months. Additional endpoints included relapses, MRI, safety, immunogenicity, and subgroup analyses of disability progression. Results: Both groups showed equal rates of disability progression (hazard ratio, 0.96; 95% CI, 0.77 to 1.20; p = 0.73). In both groups the proportion of subjects with progression of disability by 36 months estimated from Kaplan-Meier curves was 37%. No dose effects were observed on any of the secondary clinical endpoints. Only one MRI measure at one time point, number of new or enlarging T2 lesions at month 36 compared with month 24, showed a difference favoring the 60-mug dose. Both doses were well tolerated; however, slightly higher incidences of flulike symptoms and muscle weakness were observed in the 60-mug group. The incidences of neutralizing antibodies (titers greater than or equal to20) were 2.3% in the 30-mug group and 5.8% in the 60-mug group. Conclusion: There was no difference between IFNbeta-1a 30 mug and 60 mug IM in clinical or MRI measures

    A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis.

    No full text
    Item does not contain fulltextBACKGROUND: Natalizumab is the first alpha4 integrin antagonist in a new class of selective adhesion-molecule inhibitors. We report the results of a two-year phase 3 trial of natalizumab in patients with relapsing multiple sclerosis. METHODS: Of a total of 942 patients, 627 were randomly assigned to receive natalizumab (at a dose of 300 mg) and 315 to receive placebo by intravenous infusion every four weeks for more than two years. The primary end points were the rate of clinical relapse at one year and the rate of sustained progression of disability, as measured by the Expanded Disability Status Scale, at two years. RESULTS: Natalizumab reduced the risk of sustained progression of disability by 42 percent over two years (hazard ratio, 0.58; 95 percent confidence interval, 0.43 to 0.77; P<0.001). The cumulative probability of progression (on the basis of Kaplan-Meier analysis) was 17 percent in the natalizumab group and 29 percent in the placebo group. Natalizumab reduced the rate of clinical relapse at one year by 68 percent (P<0.001) and led to an 83 percent reduction in the accumulation of new or enlarging hyperintense lesions, as detected by T2-weighted magnetic resonance imaging (MRI), over two years (mean numbers of lesions, 1.9 with natalizumab and 11.0 with placebo; P<0.001). There were 92 percent fewer lesions (as detected by gadolinium-enhanced MRI) in the natalizumab group than in the placebo group at both one and two years (P<0.001). The adverse events that were significantly more frequent in the natalizumab group than in the placebo group were fatigue (27 percent vs. 21 percent, P=0.048) and allergic reaction (9 percent vs. 4 percent, P=0.012). Hypersensitivity reactions of any kind occurred in 25 patients receiving natalizumab (4 percent), and serious hypersensitivity reactions occurred in 8 patients (1 percent). CONCLUSIONS: Natalizumab reduced the risk of the sustained progression of disability and the rate of clinical relapse in patients with relapsing multiple sclerosis. Adhesion-molecule inhibitors hold promise as an effective treatment for relapsing multiple sclerosis. (ClinicalTrials.gov number, NCT00027300.)
    corecore