929 research outputs found

    Non-perturbative determination of beta-functions and excited string states from lattices

    Get PDF
    We use lattice sum rules for the static quark potential to determine the beta-function for symmetric and asymmetric lattices non-perturbatively. We also study the colour field distributions in excited gluonic states.Comment: 9 pages, LATEX, 1 postscript figur

    Decoherence and wave function collapse

    Full text link
    The possibility of consistency between the basic quantum principles of quantum mechanics and wave function collapse is reexamined. A specific interpretation of environment is proposed for this aim and applied to decoherence. When the organization of a measuring apparatus is taken into account, this approach leads also to an interpretation of wave function collapse, which would result in principle from the same interactions with environment as decoherence. This proposal is shown consistent with the non-separable character of quantum mechanics

    Hybrid meson decay from the lattice

    Get PDF
    We discuss the allowed decays of a hybrid meson in the heavy quark limit. We deduce that an important decay will be into a heavy quark non-hybrid state and a light quark meson, in other words, the de-excitation of an excited gluonic string by emission of a light quark-antiquark pair. We discuss the study of hadronic decays from the lattice in the heavy quark limit and apply this approach to explore the transitions from a spin-exotic hybrid to χbη\chi_b \eta and χbS\chi_b S where SS is a scalar meson. We obtain a signal for the transition emitting a scalar meson and we discuss the phenomenological implications.Comment: 18 pages, LATEX, 3 ps figure

    Crossover and self-averaging in the two-dimensional site-diluted Ising model

    Full text link
    Using the newly proposed probability-changing cluster (PCC) Monte Carlo algorithm, we simulate the two-dimensional (2D) site-diluted Ising model. Since we can tune the critical point of each random sample automatically with the PCC algorithm, we succeed in studying the sample-dependent Tc(L)T_c(L) and the sample average of physical quantities at each Tc(L)T_c(L) systematically. Using the finite-size scaling (FSS) analysis for Tc(L)T_c(L), we discuss the importance of corrections to FSS both in the strong-dilution and weak-dilution regions. The critical phenomena of the 2D site-diluted Ising model are shown to be controlled by the pure fixed point. The crossover from the percolation fixed point to the pure Ising fixed point with the system size is explicitly demonstrated by the study of the Binder parameter. We also study the distribution of critical temperature Tc(L)T_c(L). Its variance shows the power-law LL dependence, LnL^{-n}, and the estimate of the exponent nn is consistent with the prediction of Aharony and Harris [Phys. Rev. Lett. {\bf 77}, 3700 (1996)]. Calculating the relative variance of critical magnetization at the sample-dependent Tc(L)T_c(L), we show that the 2D site-diluted Ising model exhibits weak self-averaging.Comment: 6 pages including 6 eps figures, RevTeX, to appear in Phys. Rev.

    Local fluctuations in quantum critical metals

    Full text link
    We show that spatially local, yet low-energy, fluctuations can play an essential role in the physics of strongly correlated electron systems tuned to a quantum critical point. A detailed microscopic analysis of the Kondo lattice model is carried out within an extended dynamical mean-field approach. The correlation functions for the lattice model are calculated through a self-consistent Bose-Fermi Kondo problem, in which a local moment is coupled both to a fermionic bath and to a bosonic bath (a fluctuating magnetic field). A renormalization-group treatment of this impurity problem--perturbative in ϵ=1γ\epsilon=1-\gamma, where γ\gamma is an exponent characterizing the spectrum of the bosonic bath--shows that competition between the two couplings can drive the local-moment fluctuations critical. As a result, two distinct types of quantum critical point emerge in the Kondo lattice, one being of the usual spin-density-wave type, the other ``locally critical.'' Near the locally critical point, the dynamical spin susceptibility exhibits ω/T\omega/T scaling with a fractional exponent. While the spin-density-wave critical point is Gaussian, the locally critical point is an interacting fixed point at which long-wavelength and spatially local critical modes coexist. A Ginzburg-Landau description for the locally critical point is discussed. It is argued that these results are robust, that local criticality provides a natural description of the quantum critical behavior seen in a number of heavy-fermion metals, and that this picture may also be relevant to other strongly correlated metals.Comment: 20 pages, 12 figures; typos in figure 3 and in the main text corrected, version as publishe

    The Hitchin functionals and the topological B-model at one loop

    Full text link
    The quantization in quadratic order of the Hitchin functional, which defines by critical points a Calabi-Yau structure on a six-dimensional manifold, is performed. The conjectured relation between the topological B-model and the Hitchin functional is studied at one loop. It is found that the genus one free energy of the topological B-model disagrees with the one-loop free energy of the minimal Hitchin functional. However, the topological B-model does agree at one-loop order with the extended Hitchin functional, which also defines by critical points a generalized Calabi-Yau structure. The dependence of the one-loop result on a background metric is studied, and a gravitational anomaly is found for both the B-model and the extended Hitchin model. The anomaly reduces to a volume-dependent factor if one computes for only Ricci-flat Kahler metrics.Comment: 33 pages, LaTe

    Computing Yukawa Couplings from Magnetized Extra Dimensions

    Full text link
    We compute Yukawa couplings involving chiral matter fields in toroidal compactifications of higher dimensional super-Yang-Mills theory with magnetic fluxes. Specifically we focus on toroidal compactifications of D=10 super-Yang-Mills theory, which may be obtained as the low-energy limit of Type I, Type II or Heterotic strings. Chirality is obtained by turning on constant magnetic fluxes in each of the 2-tori. Our results are general and may as well be applied to lower D=6,8 dimensional field theories. We solve Dirac and Laplace equations to find out the explicit form of wavefunctions in extra dimensions. The Yukawa couplings are computed as overlap integrals of two Weyl fermions and one complex scalar over the compact dimensions. In the case of Type IIB (or Type I) string theories, the models are T-dual to (orientifolded) Type IIA with D6-branes intersecting at angles. These theories may have phenomenological relevance since particular models with SM group and three quark-lepton generations have been recently constructed. We find that the Yukawa couplings so obtained are described by Riemann theta-functions, which depend on the complex structure and Wilson line backgrounds. Different patterns of Yukawa textures are possible depending on the values of these backgrounds. We discuss the matching of these results with the analogous computation in models with intersecting D6-branes. Whereas in the latter case a string computation is required, in our case only field theory is needed.Comment: 73 pages, 9 figures. Using JHEP3.cls. Typos and other minor corrections fixed. References adde

    Antiferromagnetic Zigzag Spin Chain in Magnetic Fields at Finite Temperatures

    Full text link
    We study thermodynamic behaviors of the antiferromagnetic zigzag spin chain in magnetic fields, using the density-matrix renormalization group method for the quantum transfer matrix. We focus on the thermodynamics of the system near the critical fields in the ground-state magnetization process(MM-HH curve): the saturation field, the lower critical field associated with excitation gap, and the field at the middle-field cusp singularity. We calculate magnetization, susceptibility and specific heat of the zigzag chain in magnetic fields at finite temperatures, and then discuss how the calculated quantities reflect the low-lying excitations of the system related with the critical behaviors in the MM-HH curve.Comment: accepted for publication in Physical Review

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    This paper reports a measurement of D*+/- meson production in jets from proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the CERN Large Hadron Collider. The measurement is based on a data sample recorded with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets with transverse momentum between 25 and 70 GeV in the pseudorapidity range |eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z < 1. Monte Carlo predictions fail to describe the data at small values of z, and this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table, matches published version in Physical Review
    corecore