161 research outputs found

    A reconstruction method for neutrino induced muon tracks taking into account the apriori knowledge of the neutrino source

    Full text link
    Gamma ray earthbound and satellite experiments have discovered, over the last years, many galactic and extra-galactic gamma ray sources. The detection of astrophysical neutrinos emitted by the same sources would imply that these astrophysical objects are charged cosmic ray accelerators and help to resolve the enigma of the origin of cosmic rays. A very large volume neutrino telescope might be able to detect these potential neutrino emitters. The apriori known direction of the neutrino source can be used to effectively suppress the 40K^{40}K optical background and increase significantly the tracking efficiency through causality filters. We report on advancing filtering and prefit techniques using the known neutrino source direction and first results are presented.Comment: 10 pages, 4 figures, to be published in Nucl. Inst. and Meth. A v2: minor changes, 1 page adde

    Evaluation of the discovery potential of an underwater Mediterranean neutrino telescope taking into account the estimated directional resolution and energy of the reconstructed tracks

    Full text link
    We report on the development of search methods for point-like and extended neutrino sources, utilizing the tracking and energy estimation capabilities of an underwater, Very Large Volume Neutrino Telescope (VLVnT). We demonstrate that the developed techniques offer a significant improvement on the telescope's discovery potential. We also present results on the potential of the Mediterranean KM3NeT to discover galactic neutrino sources.Comment: 12 pages, 1 figure, to be published in Nucl. Inst. and Meth. A v2: minor changes, 1 page adde

    Reconstruction efficiency and discovery potential of a Mediterranean neutrino telescope: A simulation study using the Hellenic Open University Reconstruction & Simulation (HOURS) package

    Full text link
    We report on the evaluation of the performance of a Mediterranean very large volume neutrino telescope. We present results of our studies concerning the capability of the telescope in detecting/discovering galactic (steady point sources) and extragalactic, transient (Gamma Ray Bursts) high energy neutrino sources as well as measuring ultra high energy diffuse neutrino fluxes. The neutrino effective area and angular resolution are presented as a function of the neutrino energy, and the background event rate (atmospheric neutrinos and muons) is estimated. The discovery potential of the neutrino telescope is evaluated and the experimental time required for a significant discovery of potential neutrino emitters (known from their gamma ray emission, assumedly produced by hadronic interactions) is estimated. For the simulation we use the HOU Reconstruction & Simulation (HOURS) software package.Comment: 10 pages, 4 figures, to be published in Nucl. Inst. and Meth. A v2: minor changes, 1 page adde

    A Feasibility Study for the Detection of Supernova Explosions with an Undersea Neutrino Telescope

    Full text link
    We study the potential of a very large volume underwater Mediterranean neutrino telescope to observe neutrinos from supernova (SN) explosions within our galaxy. The intense neutrino burst emitted in a SN explosion results in a large number of MeV neutrinos inside the instrumented volume of the neutrino telescope that can be detected (mainly) via the reaction \nu_e-bar + p -> e^+ + n . In this study we simulated the response of the underwater neutrino telescope to the electron antineutrino flux predicted by the Garching model for SN explosions. We assumed that the neutrino telescope comprises 6160 direction sensitive optical modules, each containing 31 small photomultiplier tubes. Multiple coincidences between the photomultiplier tubes of the same optical module are utilized to suppress the noise produced by 40K^{40}K radioactive decays and to establish a statistical significant signature of the SN explosion.Comment: 11 pages, 3 figures, to be published in Nucl. Inst. and Meth. A v2: minor changes, 1 page adde

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p

    Searches for lepton-flavour-violating decays of the Higgs boson in s=13\sqrt{s}=13 TeV pp\mathit{pp} collisions with the ATLAS detector

    Get PDF
    This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio

    Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb⁻¹ of pp collisions at \sqrts = 13 TeV with the ATLAS experiment

    Get PDF
    A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5). © 2019 The Author(s

    Measurement of fiducial and differential W + W - production cross-sections at s = 13 TeV with the ATLAS detector

    Get PDF
    Abstract: A measurement of fiducial and differential cross-sections for W+W- production in proton–proton collisions at s=13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 36.1 fb-1 is presented. Events with one electron and one muon are selected, corresponding to the decay of the diboson system as WW→e±νμ∓ν. To suppress top-quark background, events containing jets with a transverse momentum exceeding 35 GeV are not included in the measurement phase space. The fiducial cross-section, six differential distributions and the cross-section as a function of the jet-veto transverse momentum threshold are measured and compared with several theoretical predictions. Constraints on anomalous electroweak gauge boson self-interactions are also presented in the framework of a dimension-six effective field theory

    Identification of boosted Higgs bosons decaying into b -quark pairs with the ATLAS detector at 13 TeV

    Get PDF
    Abstract: This paper describes a study of techniques for identifying Higgs bosons at high transverse momenta decaying into bottom-quark pairs, H→bb¯, for proton–proton collision data collected by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy s=13 TeV. These decays are reconstructed from calorimeter jets found with the anti-ktR=1.0 jet algorithm. To tag Higgs bosons, a combination of requirements is used: b-tagging of R=0.2 track-jets matched to the large-R calorimeter jet, and requirements on the jet mass and other jet substructure variables. The Higgs boson tagging efficiency and corresponding multijet and hadronic top-quark background rejections are evaluated using Monte Carlo simulation. Several benchmark tagging selections are defined for different signal efficiency targets. The modelling of the relevant input distributions used to tag Higgs bosons is studied in 36 fb-1 of data collected in 2015 and 2016 using g→bb¯ and Z(→bb¯)γ event selections in data. Both processes are found to be well modelled within the statistical and systematic uncertainties

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)
    corecore