163 research outputs found

    Statistical Model of Shape Moments with Active Contour Evolution for Shape Detection and Segmentation

    Get PDF
    This paper describes a novel method for shape representation and robust image segmentation. The proposed method combines two well known methodologies, namely, statistical shape models and active contours implemented in level set framework. The shape detection is achieved by maximizing a posterior function that consists of a prior shape probability model and image likelihood function conditioned on shapes. The statistical shape model is built as a result of a learning process based on nonparametric probability estimation in a PCA reduced feature space formed by the Legendre moments of training silhouette images. A greedy strategy is applied to optimize the proposed cost function by iteratively evolving an implicit active contour in the image space and subsequent constrained optimization of the evolved shape in the reduced shape feature space. Experimental results presented in the paper demonstrate that the proposed method, contrary to many other active contour segmentation methods, is highly resilient to severe random and structural noise that could be present in the data

    Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen

    Get PDF
    MicroRNAs are small non-coding RNAs that modulate gene expression at post-transcriptional level, playing a crucial role in cell differentiation and development. Recently, some reports have shown that a limited number of mammalian microRNAs are also involved in anti-viral defense. In this study, the analysis of the hepatitis B virus (HBV) genome by the computer program MiRanda led to the identification of seven sites that are potential targets for human liver microRNAs. These sites were found to be clustered in a 995-bp segment within the viral polymerase ORF and the overlapping surface antigen ORF, and conserved among the most common HBV subtypes. The HBV genomic targets were then subjected to a validation test based on cultured hepatic cells (HepG2, HuH-7 and PLC/PRF/5) and luciferase reporter genes. In this test, one of the selected microRNAs, hsa-miR-125a-5p, was found to interact with the viral sequence and to suppress the reporter activity markedly. The microRNA was then shown to interfere with the viral translation, down-regulating the expression of the surface antigen. Overall, these results support the emerging concept that some mammalian microRNAs play a role in virus-host interaction. Furthermore, they provide the basis for the development of new strategies for anti-HBV intervention

    The ocean sampling day consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits

    Systematic Deletion of Homeobox Genes in Podospora anserina Uncovers Their Roles in Shaping the Fruiting Body

    Get PDF
    Higher fungi, which comprise ascomycetes and basidiomycetes, play major roles in the biosphere. Their evolutionary success may be due to the extended dikaryotic stage of their life cycle, which is the basis for their scientific name: the Dikarya. Dikaryosis is maintained by similar structures, the clamp in basidiomycetes and the crozier in ascomycetes. Homeodomain transcription factors are required for clamp formation in all basidiomycetes studied. We identified all the homeobox genes in the filamentous ascomycete fungus Podospora anserina and constructed deletion mutants for each of these genes and for a number of gene combinations. Croziers developed normally in these mutants, including those with up to six deleted homeogenes. However, some mutants had defects in maturation of the fruiting body, an effect that could be rescued by providing wild-type maternal hyphae. Analysis of mutants deficient in multiple homeogenes revealed interactions between the genes, suggesting that they operate as a complex network. Similar to their role in animals and plants, homeodomain transcription factors in ascomycetes are involved in shaping multicellular structures

    Unc45b Forms a Cytosolic Complex with Hsp90 and Targets the Unfolded Myosin Motor Domain

    Get PDF
    Myosin folding and assembly in striated muscle is mediated by the general chaperones Hsc70 and Hsp90 and a myosin specific co-chaperone, UNC45. Two UNC45 genes are found in vertebrates, including a striated muscle specific form, Unc45b. We have investigated the role of Unc45b in myosin folding. Epitope tagged murine Unc45b (Unc45bFlag) was expressed in muscle and non-muscle cells and bacteria, isolated and characterized. The protein is a soluble monomer in solution with a compact folded rod-shaped structure of ∼19 nm length by electron microscopy. When over-expressed in striated muscle cells, Unc45bFlag fractionates as a cytosolic protein and isolates as a stable complex with Hsp90. Purified Unc45bFlag re-binds Hsp90 and forms a stable complex in solution. The endogenous Unc45b in muscle cell lysates is also found associated with Hsp90. The Unc45bFlag/Hsp90 complex binds the partially folded myosin motor domain when incubated with myosin subfragments synthesized in a reticulocyte lysate. This binding is independent of the myosin rod or light chains. Unc45bFlag does not bind native myosin subfragments consistent with a chaperone function. More importantly, Unc45bFlag enhances myosin motor domain folding during de novo motor domain synthesis indicating that it has a direct role in myosin maturation. Thus, mammalian Unc45b is a cytosolic protein that forms a stable complex with Hsp90, selectively binds the unfolded conformation of the myosin motor domain, and promotes motor domain folding

    Interfering RNA and HIV: Reciprocal Interferences

    Get PDF
    In this review, a quick presentation of what interfering RNA (iRNA) are—small RNA able to exert an inhibition on gene expression at a posttranscriptional level, based on sequence homology between the iRNA and the mRNA—will be given. The many faces of the interrelations between iRNA and viruses, particularly HIV, will be reviewed. Four kinds of interactions have been described: i) iRNA of viral origin blocking viral RNA, ii) iRNA of viral origin downregulating cellular mRNA, iii) iRNA of cellular origin (microRNA) targeting viral RNA, and iv) microRNA downregulating cellular mRNA encoding cell proteins used by the virus for its replication. Next, HIV strategies to manipulate these interrelations will be considered: suppression of iRNA biosynthesis by Tat, trapping by the HIV TAR sequence of a cell component, TRBP, necessary for iRNA production and action, and induction by the virus of some microRNA together with suppression of others. Then, we will discuss the putative effects of these mutual influences on viral replication as well as on viral latency, immune response, and viral cytopathogenicity. Finally, the potential consequences on the human infection of genetic polymorphisms in microRNA genes and the therapeutic potential of iRNA will be presented

    Differentially expressed microRNAs in experimental cerebral malaria and their involvement in endocytosis, adherens junctions, FoxO and TGF-β signalling pathways

    Get PDF
    Cerebral malaria (CM) is the most severe manifestation of infection with Plasmodium, however its pathogenesis is still not completely understood. microRNA (miRNA) have been an area of focus in infectious disease research, due to their ability to affect normal biological processes, and have been shown to play roles in various viral, bacterial and parasitic infections, including malaria. The expression of miRNA was studied following infection of CBA mice with either Plasmodium berghei ANKA (causing CM), or Plasmodium yoelii (causing severe but non-cerebral malaria (NCM)). Using microarray analysis, miRNA expression was compared in the brains of non-infected (NI), NCM and CM mice. Six miRNA were significantly dysregulated between NCM and CM mice, and four of these, miR-19a-3p, miR-19b-3p, miR-142-3p and miR-223-3p, were further validated by qPCR assays. These miRNA are significantly involved in several pathways relevant to CM, including the TGF-β and endocytosis pathways. Dysregulation of these miRNA during CM specifically compared with NCM suggests that these miRNA, through their regulation of downstream targets, may be vitally involved in the neurological syndrome. Our data implies that, at least in the mouse model, miRNA may play a regulatory role in CM pathogenesis.This work was funded by the National Health and Medical Research Council (#1099920 for GEG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S
    corecore