18 research outputs found

    Origin of Small Barriers in Jahn–Teller Systems:Quantifying the Role of 3d–4s Hybridization in the Model System NaCl:Ni<sup>+</sup>

    Get PDF
    Despite its relevance, the microscopic origin of the energy barrier, B, between the compressed and elongated geometries of Jahn–Teller (JT) systems is not well understood yet because of a lack of quantitative data about its various contributions. Seeking to clear up this matter, we have carried out both periodic and cluster ab initio calculations on the model system NaCl:Ni+. This system is particularly puzzling because, according to experimental data, its barrier is much smaller than that for other d9 and d7 ions in similar lattices. All calculations performed on the model system lead, in fact, to values |B| ≀ 160 cm–1, which are certainly smaller than B = 500 cm–1 derived for NaCl:M2+ (M = Ag, Rh) or B = 1024 cm–1 obtained for KCl:Ag2+. As a salient feature, analysis of calculations carried out as a function of the QΞ (3z2 – r2) coordinate unveils the microscopic origin of the barrier. It is quantitatively proven that the elongated geometry observed for NaCl:Ni+ is due to the 3d–4s vibronic admixture, which is slightly larger than the anharmonicity in the eg JT mode that favors a compressed geometry. The existence of these two competing mechanisms explains the low value of B for the model system, contrary to cases where the complex formed by d9 or d7 ions is elastically decoupled from the host lattice. Although the magnitude of B for NaCl:Ni+ is particularly small, the tunneling splitting, 3Γ, is estimated to be below 9 cm–1, thus explaining why the coherence is easily destroyed by random strains and thus a static JT effect is observed experimentally. As a main conclusion, the barrier in JT systems cannot be understood neglecting the tiny changes of the electronic density involved in small distortions. The present calculations reasonably explain the experimental g tensor of NaCl:Ni+, pointing out that the d–d transitions in NiCl65– are much smaller than those for CuCl64– and the optical electronegativity of Ni+ is only around 1.</p

    Search for pair-produced resonances decaying to quark pairs in proton-proton collisions at root s=13 TeV

    Get PDF
    A general search for the pair production of resonances, each decaying to two quarks, is reported. The search is conducted separately for heavier resonances (masses above 400 GeV), where each of the four final-state quarks generates a hadronic jet resulting in a four-jet signature, and for lighter resonances (masses between 80 and 400 GeV), where the pair of quarks from each resonance is collimated and reconstructed as a single jet resulting in a two-jet signature. In addition, a b-tagged selection is applied to target resonances with a bottom quark in the final state. The analysis uses data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 35.9 fb(-1), from proton-proton collisions at a center-of-mass energy of 13 TeV. The mass spectra are analyzed for the presence of new resonances, and are found to be consistent with standard model expectations. The results are interpreted in the framework of R-parity-violating supersymmetry assuming the pair production of scalar top quarks decaying via the hadronic coupling lambda ''(312) or lambda ''(323) and upper limits on the cross section as a function of the top squark mass are set. These results probe a wider range of masses than previously explored at the LHC, and extend the top squark mass limits in the (t) over tilde -> qq' scenario.Peer reviewe

    Origin of Small Barriers in Jahn–Teller Systems: Quantifying the Role of 3d–4s Hybridization in the Model System NaCl:Ni<sup>+</sup>

    No full text
    Despite its relevance, the microscopic origin of the energy barrier, <i>B</i>, between the compressed and elongated geometries of Jahn–Teller (JT) systems is not well understood yet because of a lack of quantitative data about its various contributions. Seeking to clear up this matter, we have carried out both periodic and cluster ab initio calculations on the model system NaCl:Ni<sup>+</sup>. This system is particularly puzzling because, according to experimental data, its barrier is much smaller than that for other d<sup>9</sup> and d<sup>7</sup> ions in similar lattices. All calculations performed on the model system lead, in fact, to values |<i>B</i>| ≀ 160 cm<sup>–1</sup>, which are certainly smaller than <i>B</i> = 500 cm<sup>–1</sup> derived for NaCl:M<sup>2+</sup> (M = Ag, Rh) or <i>B</i> = 1024 cm<sup>–1</sup> obtained for KCl:Ag<sup>2+</sup>. As a salient feature, analysis of calculations carried out as a function of the <i>Q</i><sub>Ξ</sub> (∌3<i>z</i><sup>2</sup> – <i>r</i><sup>2</sup>) coordinate unveils the microscopic origin of the barrier. It is quantitatively proven that the elongated geometry observed for NaCl:Ni<sup>+</sup> is due to the 3d–4s vibronic admixture, which is slightly larger than the anharmonicity in the e<sub>g</sub> JT mode that favors a compressed geometry. The existence of these two competing mechanisms explains the low value of <i>B</i> for the model system, contrary to cases where the complex formed by d<sup>9</sup> or d<sup>7</sup> ions is elastically decoupled from the host lattice. Although the magnitude of <i>B</i> for NaCl:Ni<sup>+</sup> is particularly small, the tunneling splitting, 3Γ, is estimated to be below 9 cm<sup>–1</sup>, thus explaining why the coherence is easily destroyed by random strains and thus a static JT effect is observed experimentally. As a main conclusion, the barrier in JT systems cannot be understood neglecting the tiny changes of the electronic density involved in small distortions. The present calculations reasonably explain the experimental <b>g</b> tensor of NaCl:Ni<sup>+</sup>, pointing out that the d–d transitions in NiCl<sub>6</sub><sup>5–</sup> are much smaller than those for CuCl<sub>6</sub><sup>4–</sup> and the optical electronegativity of Ni<sup>+</sup> is only around 1

    Observation of the Λb0→J/ψΛφ decay in proton-proton collisions at s=13TeV

    No full text
    The observation of the Λb0→J/ψΛφ decay is reported using proton-proton collision data collected at s=13TeV by the CMS experiment at the LHC in 2018, corresponding to an integrated luminosity of 60fb−1. The ratio of the branching fractions B(Λb0→J/ψΛφ)/B(Λb0→ψ(2S)Λ) is measured to be (8.26±0.90(stat)±0.68(syst)±0.11(B))×10−2, where the first uncertainty is statistical, the second is systematic, and the last uncertainty reflects the uncertainties in the world-average branching fractions of φ and ψ(2S) decays to the reconstructed final states

    Measurement of the cross section for tt‟ \mathrm{t}\overline{\mathrm{t}} production with additional jets and b jets in pp collisions at s \sqrt{s} = 13 TeV

    No full text
    Measurements of the cross section for the production of top quark pairs in association with a pair of jets from bottom quarks (σtt‟bb‟) \left({\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{b}\overline{\mathrm{b}}}\right) and in association with a pair of jets from quarks of any flavor or gluons (σtt‟jj) \left({\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{jj}}\right) and their ratio are presented. The data were collected in proton-proton collisions at a center-of-mass energy of 13 TeV by the CMS experiment at the LHC in 2016 and correspond to an integrated luminosity of 35.9 fb−1. The measurements are performed in a fiducial phase space and extrapolated to the full phase space, separately for the dilepton and lepton+jets channels, where lepton corresponds to either an electron or a muon. The results of the measurements in the fiducial phase space for the dilepton and lepton+jets channels, respectively, are σtt‟jj {\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{jj}} = 2.36±0.02 (stat)±0.20 (syst) pb and 31.0±0.2 (stat)±2.9 (syst) pb, and for the cross section ratio 0.017 ± 0.001 (stat) ± 0.001 (syst) and 0.020 ± 0.001 (stat) ± 0.001 (syst). The values of σtt‟bb‟ {\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{b}\overline{\mathrm{b}}} are determined from the product of the σtt‟jj {\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{jj}} and the cross section ratio, obtaining, respectively, 0.040±0.002 (stat)±0.005 (syst) pb and 0.62±0.03 (stat)±0.07 (syst) pb. These measurements are the most precise to date and are consistent, within the uncertainties, with the standard model expectations obtained using a matrix element calculation at next-to-leading order in quantum chromodynamics matched to a parton shower

    Observation of nuclear modifications in W± boson production in pPb collisions at sNN=8.16TeV

    No full text
    The production of W± bosons is studied in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of sNN=8.16TeV. Measurements are performed in the W±→Ό±ΜΌ channel using a data sample corresponding to an integrated luminosity of 173.4±6.1nb−1, collected by the CMS Collaboration at the LHC. The number of positively and negatively charged W bosons is determined separately in the muon pseudorapidity region in the laboratory frame |ηlabÎŒ|25GeV/c. The W± boson differential cross sections, muon charge asymmetry, and the ratios of W± boson yields for the proton-going over the Pb-going beam directions are reported as a function of the muon pseudorapidity in the nucleon-nucleon centre-of-mass frame. The measurements are compared to the predictions from theoretical calculations based on parton distribution functions (PDFs) at next-to-leading-order. The results favour PDF calculations that include nuclear modifications and provide constraints on the nuclear PDF global fits

    Measurement of ttˉ\hbox {t}{\bar{\hbox {t}}} normalised multi-differential cross sections in pp{\text {p}}{\text {p}} collisions at s=13 TeV\sqrt{s}=13\,{\text {TeV}} , and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    No full text
    Normalised multi-differential cross sections for top quark pair (ttˉ\hbox {t}{\bar{\hbox {t}}}) production are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV\,{\text {TeV}} using events containing two oppositely charged leptons. The analysed data were recorded with the CMS detector in 2016 and correspond to an integrated luminosity of 35.9 fb−135.9{\,{\text {fb}}^{-1}} . The double-differential ttˉ\hbox {t}{\bar{\hbox {t}}} cross section is measured as a function of the kinematic properties of the top quark and of the ttˉ\hbox {t}{\bar{\hbox {t}}} system at parton level in the full phase space. A triple-differential measurement is performed as a function of the invariant mass and rapidity of the ttˉ\hbox {t}{\bar{\hbox {t}}} system and the multiplicity of additional jets at particle level. The data are compared to predictions of Monte Carlo event generators that complement next-to-leading-order (NLO) quantum chromodynamics (QCD) calculations with parton showers. Together with a fixed-order NLO QCD calculation, the triple-differential measurement is used to extract values of the strong coupling strength αS\alpha _{S} and the top quark pole mass (mtpolem_{{\text {t}}}^{{\text {pole}}}) using several sets of parton distribution functions (PDFs). The measurement of mtpolem_{{\text {t}}}^{{\text {pole}}} exploits the sensitivity of the ttˉ\hbox {t}{\bar{\hbox {t}}} invariant mass distribution to mtpolem_{{\text {t}}}^{{\text {pole}}} near the production threshold. Furthermore, a simultaneous fit of the PDFs, αS\alpha _{S}, and mtpolem_{{\text {t}}}^{{\text {pole}}} is performed at NLO, demonstrating that the new data have significant impact on the gluon PDF, and at the same time allow an accurate determination of αS\alpha _{S} and mtpolem_{{\text {t}}}^{{\text {pole}}}. The values αS(mZ)=0.1135−0.0017+0.0021\alpha _{S}(m_{{\text {Z}}}) = 0.1135{}^{+0.0021}_{-0.0017} and mtpole=170.5±0.8 GeVm_{{\text {t}}}^{{\text {pole}}} = 170.5 \pm 0.8 \,{\text {GeV}} are extracted, which account for experimental and theoretical uncertainties, the latter being estimated from NLO scale variations. Possible effects from Coulomb and soft-gluon resummation near the ttˉ\hbox {t}{\bar{\hbox {t}}} production threshold are neglected in these parameter extractions. A rough estimate of these effects indicates an expected correction of mtpolem_{{\text {t}}}^{{\text {pole}}} of the order of +1 GeV+1 \,{\text {GeV}} , which can be regarded as additional theoretical uncertainty in the current mtpolem_{{\text {t}}}^{{\text {pole}}} extraction

    A search for the standard model Higgs boson decaying to charm quarks

    No full text
    A direct search for the standard model Higgs boson, H, produced in association with a vector boson, V (W or Z), and decaying to a charm quark pair is presented. The search uses a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb−1, collected by the CMS experiment at the LHC in 2016, at a centre-of-mass energy of 13 TeV. The search is carried out in mutually exclusive channels targeting specific decays of the vector bosons: W → lÎœ, Z → ll, and Z → ΜΜ, where l is an electron or a muon. To fully exploit the topology of the H boson decay, two strategies are followed. In the first one, targeting lower vector boson transverse momentum, the H boson candidate is reconstructed via two resolved jets arising from the two charm quarks from the H boson decay. A second strategy identifies the case where the two charm quark jets from the H boson decay merge to form a single jet, which generally only occurs when the vector boson has higher transverse momentum. Both strategies make use of novel methods for charm jet identification, while jet substructure techniques are also exploited to suppress the background in the merged-jet topology. The two analyses are combined to yield a 95% confidence level observed (expected) upper limit on the cross section σ(VH)B(H→cc‟) \sigma \left(\mathrm{VH}\right)\mathrm{\mathcal{B}}\left(\mathrm{H}\to \mathrm{c}\overline{\mathrm{c}}\right) of 4.5 (2.4−0.7+1.0) \left({2.4}_{-0.7}^{+1.0}\right) pb, corresponding to 70 (37) times the standard model prediction

    Search for single production of vector-like quarks decaying to a top quark and a W boson in proton–proton collisions at s=13TeV

    Get PDF
    A search is presented for the single production of vector-like quarks in proton-proton collisions at s = 13 TeV . The data, corresponding to an integrated luminosity of 35.9 fb - 1 , were recorded with the CMS experiment at the LHC. The analysis focuses on the vector-like quark decay into a top quark and a W boson, with one muon or electron in the final state. The mass of the vector-like quark candidate is reconstructed from hadronic jets, the lepton, and the missing transverse momentum. Methods for the identification of b quarks and of highly Lorentz boosted hadronically decaying top quarks and W bosons are exploited in this search. No significant deviation from the standard model background expectation is observed. Exclusion limits at 95% confidence level are set on the product of the production cross section and branching fraction as a function of the vector-like quark mass, which range from 0.3 to 0.03 pb for vector-like quark masses of 700 to 2000 GeV . Mass exclusion limits up to 1660 GeV are obtained, depending on the vector-like quark type, coupling, and decay width. These represent the most stringent exclusion limits for the single production of vector-like quarks in this channel
    corecore