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ABSTRACT: Despite its relevance, the microscopic origin of
the energy barrier, B, between the compressed and elongated
geometries of Jahn−Teller (JT) systems is not well understood
yet because of a lack of quantitative data about its various
contributions. Seeking to clear up this matter, we have carried
out both periodic and cluster ab initio calculations on the
model system NaCl:Ni+. This system is particularly puzzling
because, according to experimental data, its barrier is much
smaller than that for other d9 and d7 ions in similar lattices. All
calculations performed on the model system lead, in fact, to
values |B| ≤ 160 cm−1, which are certainly smaller than B = 500
cm−1 derived for NaCl:M2+ (M = Ag, Rh) or B = 1024 cm−1

obtained for KCl:Ag2+. As a salient feature, analysis of calculations carried out as a function of the Qθ (∼3z2 − r2) coordinate
unveils the microscopic origin of the barrier. It is quantitatively proven that the elongated geometry observed for NaCl:Ni+ is due
to the 3d−4s vibronic admixture, which is slightly larger than the anharmonicity in the eg JT mode that favors a compressed
geometry. The existence of these two competing mechanisms explains the low value of B for the model system, contrary to cases
where the complex formed by d9 or d7 ions is elastically decoupled from the host lattice. Although the magnitude of B for
NaCl:Ni+ is particularly small, the tunneling splitting, 3Γ, is estimated to be below 9 cm−1, thus explaining why the coherence is
easily destroyed by random strains and thus a static JT effect is observed experimentally. As a main conclusion, the barrier in JT
systems cannot be understood neglecting the tiny changes of the electronic density involved in small distortions. The present
calculations reasonably explain the experimental g tensor of NaCl:Ni+, pointing out that the d−d transitions in NiCl6

5− are much
smaller than those for CuCl6

4− and the optical electronegativity of Ni+ is only around 1.

1. INTRODUCTION

A fundamental question to be answered in the research of
materials is the actual origin of their structure and its
relationship with the arrangement of electronic levels. To
gain better insight into this relevant matter is certainly not easy
because compounds that are similar in composition do not
always display the same structure. For instance, at low
temperatures, KMgF3 and KNiF3 perovskites are both cubic,
while KMnF3 is tetragonal.1,2 In the same vein, there is a
striking difference in the geometry of the CuCl4(NH3)2

2− and
CuCl4(H2O)2

2− centers formed, for example, in Cu2+-doped
NH4Cl. While the first center is tetragonal with four equivalent
equatorial Cl− ligands, the substitution of axial NH3 molecules
by another neutral molecule, H2O, produces a big ortho-
rhombic distortion in the equatorial plane.3−6 Despite these
facts, to understand what among two or more possible phases
of a compound becomes the most stable at low temperatures is
not a simple question because energy differences on the order
of 100 cm−1 or below are often involved.2,6−8

A situation of this kind is found in the realm of the Eg⊗eg
Jahn−Teller (JT) effect9−12 widely studied in the case of d9 and
d7 ions in cubic insulating lattices under octahedral
coordination. In these cases, the dependence of the ground-
state energy as a function of Qθ (∼3z2 − r2) and Qε (∼x2 − y2)
coordinates exhibits three equivalent adiabatic minima,
involving tetragonal distortions along the three main axes,
which are separated by an energy barrier B (Figure 1). This
barrier plays a key role for understanding the properties of JT
systems. In fact, the existence of a low barrier is a necessary
condition for observing coherent tunneling among the different
minima in electron paramagnetic resonance (EPR) experi-
ments, a phenomenon termed the dynamic JT effect.9−14 By
contrast, as often happens, the unavoidable random strains,
present in any real crystal, destroy the coherence, giving rise to
the static JT effect.9,13,14 In this case, the sign of B determines
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whether the equilibrium geometry corresponds to an elongated
or a compressed octahedron and thus the electronic ground
state. So, if in the warped surface depicted in Figure 1, the
minima describe an elongated conformation and the saddle
points correspond to a compressed one, B > 0, while the
reverse happens if B < 0. Accordingly, if B > 0, the electronic
ground state is B1g for a d9 ion and A1g for a d7 ion.
Furthermore, in a static JT effect, the barrier controls the rate of
incoherent transitions among the three wells and thus the
passage of a tetragonal EPR spectrum to an isotropic one when
the temperature is raised.9,10,12

Despite its relevance, little is still known on the actual values
of B for JT systems and the microscopic origin of the energy
barrier. This work is devoted to improve our quantitative
knowledge on this matter by exploring in some detail the origin
of B for the model system NaCl:Ni+.15 This system has been
chosen for the following reasons: (i) The low temperature, Tt =
35 K, at which the static EPR spectrum15 of NaCl:Ni+ in the X
band starts to disappear suggests that its barrier, B, is clearly
smaller than that for other d9 (Ag2+, Cu2+)16,17 and d7 (Rh2+)18

ions in the same host lattice, a surprising fact that deserves to be
explored. (ii) Despite the small B value expected for NaCl:Ni+,
the low-temperature EPR spectra clearly prove that the JT
effect is static and not dynamic.15 (iii) It has been shown11 that
the vibronic 4d−5s admixture for NaCl:Rh2+ makes an
important, though not dominant, contribution to B. As the
nd−(n+1)s separation is reduced upon passing from a divalent
to a monovalent cation,19 the effects of the vibronic nd−(n+1)s
admixture on B are expected to be enhanced in a system like
NaCl:Ni+.
It was earlier argued by Öpik and Pryce20 that the barrier in a

JT system is due to the anharmonicity present in the eg
vibration mode. Accordingly, a MX6 complex (M = d9 or d7

ion) embedded in an insulating cubic lattice would prefer an
elongated over a compressed geometry provided that it is
elastically decoupled from the rest of the lattice where it is
embedded.11,21 By contrast, other authors12,22,23 have ascribed
the origin of B to the quadratic JT term involving operators that
depend quadratically on Qθ and Qε coordinates. However, a
previous quantitative study performed on several JT systems
points out that the quadratic JT term plays a minor role while
the vibronic admixture of eg* orbitals (∼3z2 − r2; ∼x2 − y2)
with other ones due to the linear JT term but treated in second-
order perturbations yields an important contribution11 to B.
More precisely, in NaCl:Rh2+, about 40% of the barrier has

been shown to come from the vibronic admixture of the
a1g*(∼3z2-r2) orbital with the mainly 5s level of Rh2+, although
the dominant contribution does arise from the anharmonicity.11

Moreover, because the RhCl6
4− complex in NaCl is elastically

decoupled from the rest of the lattice, both contributions have
been shown11,13,14 to favor an elongated geometry, making B =
511 cm−1. These results explain our interest in Ni+ systems
because the 3d−4s separation is only 2 eV for the free ion while
values close to 10 eV correspond to the 4d−5s separation for
free Ag2+ or Rh2+ ions.19 The influence of the 3d−4s mixing on
the equilibrium geometry of Cu2+ complexes has previously
been suggested by several authors.24−28

Although Ni+ is an unusual oxidation state for nickel, such a
valence has been stabilized in lattices like LiF,29 NaF,29

KZnF3,
30 KMgF3,

31 CsCaF3,
32 or AgCl33,34 initially doped with

Ni2+ and subsequently irradiated with X-rays or UV rays.
Nevertheless, in Bridgman-grown crystals of NaCl doped with
divalent nickel, EPR experiments by Shengelaya et al.15 have
undoubtedly proven the formation of Ni+ impurities without
irradiating the samples. Such impurities are likely formed
through chemical reactions at a temperature of ∼1100 K during
the purification process of the molten salt.15 This is the reason
why the Ni+ ions formed in this way easily replace a host Na+

cation in the NaCl lattice without having a close vacancy. Thus,
at variance with what happens for LiF:Ni+,29 KMgF3:Ni

+,31 or
CsCaF3:Ni

+,32 only one Ni+ center is formed in the samples of
NaCl:Ni+ explored by Shengelaya et al.15 This is thus an
important reason for choosing NaCl:Ni+ among the different
JT systems involving Ni+.
The g tensor of NaCl:Ni+ measured at T = 20 K (g∥ = 2.86;

g⊥ = 2.10) undoubtedly proves15 that the equilibrium geometry
corresponds to an elongated octahedron, although no precise
information on the equilibrium Rax and Req values can be
derived from it. However, this static spectrum starts to
disappear at Tt = 35 K in the X band, while an isotropic
spectrum with g = 2.40 is already observed at 55 K.15 Thus,
both the low value of Tt and the high value of g∥ − g⊥ strongly
suggest that the barrier between two equivalent distortions is
certainly small because B is roughly proportional9,35 to Tt/L(g∥
− g⊥). For comparison, in NaCl:Ag2+, where g∥ = 2.198 and g⊥
= 2.041,16,10 Tt = 95 K, while the calculated B value is equal35 to
500 cm−1. In KCl:Ag2+, whose g tensor is very close to that
measured for NaCl:Ag2+, it is found35 that B = 1024 cm−1,
which is consistent with a higher Tt = 160 K value.16

Bearing these facts in mind, the present work is addressed to
explore the system NaCl:Ni+ by means of ab initio calculations
based on density functional theory (DFT), together with an
analysis of the results, seeking to clarify the mechanisms
responsible for the energy barrier. In particular, aside from
determining the equilibrium geometry, we want to understand
quantitatively why the barrier in NaCl:Ni+15 is seemingly much
smaller than that for Ag2+,16 Cu2+,17 or Rh2+18,36 impurities in
the same lattice. For achieving these goals, first-principles
calculations using periodic supercells as well as finite clusters
have both been carried out. Because of the expected smallness
of B for NaCl:Ni+, different types of calculations are used in
order to see if all of them are consistent with this view.
It should be noted that, because the 3d−4s separation for

free Ni+ (2 eV) is much smaller than that for divalent d9 ions
like Cu2+ or Ag2+,19 the more dif fuse 4s levels can play an
important role for understanding the properties of NaCl:Ni+.
For this reason, that system is, in principle, more complicated

Figure 1. Left: “Tricorn” or warped “Mexican hat” corresponding to
the adiabatic potential energy surface of the Eg⊗eg JT effect showing
the energy barrier B. Right: Top view of the “tricorn” showing the
positions of three minima (red circles) and three saddle points (green
triangles).
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than those involving divalent or trivalent transition-metal
impurities.
This work is arranged as follows. Details on the calculation

procedure are given in section 2, while the main results
obtained in the present work are shown in section 4. In that
section, particular attention is paid to exploring the energy,
E(A1g) and E(B1g), of both A1g and B1g electronic states as a
function of the Qθ coordinate. Seeking to clear out the
mechanism responsible for the barrier, B, in NaCl:Ni+, such
dependencies are analyzed following the procedure11 employed
in an analysis of cluster calculations on NaCl:Rh2+. For the sake
of completeness, a recall of that procedure is previously given in
section 3.

2. COMPUTATIONAL DETAILS
2.1. Periodic Calculations. Periodic ab initio calculations based

on DFT have been carried out on the NaCl:Ni+ system in order to
obtain the optimized geometries of the tetragonal elongated and
compressed conformations of the JT center and thus the energy
barrier between them. All calculations have been performed on 2 × 2
× 2 conventional supercells (which comprise 64 ions), where the Ni+

impurity replaces a Na+ ion of the lattice.
Most calculations were performed with the CRYSTAL09 package

that employs localized Gaussian-type orbital (GTO) basis sets to
represent the Bloch orbitals.37 Because the energy barrier, B, between
elongated and compressed conformations of the NiCl6

5− complex in
NaCl is expected to be very small, basis sets of different qualities as
well as various exchange-correlation functionals have been employed.
With regard to the basis sets, most of the calculations have been
performed using the pob-TZVP-2012 functions, recently optimized by
Peintinger, Vilela Oliveira, and Bredow,38 which are all-electron with
triple-ζ valence with polarization quality. For the sake of comparison,
other basis sets of lesser quality have also been used,39−41 which can be
taken from the CRYSTAL database.42 Concerning the exchange-
correlation functionals, we have used the following ones: Perdew−
Zunger parametrization of the Ceperley−Alder free-electron gas
correlation results in the local density approximation43 (LDA); a
PBEsol functional designed specifically to improve the generalized
gradient approximation (GGA) in solids.44 Apart from these, we have
also employed hybrid functionals (with respectively 16% and 20% of
Hartree−Fock exchange) such as the B1WC45 and PW1PW.46 These
hybrid functionals allow one to obtain geometries, band gaps, and
thermochemistry properties with great accuracy and reliability without
the need for semiempirical parameters like in DFT+U procedures.
We have employed a 4 × 4 × 4 k-point mesh, and the structures

have been relaxed until a maximum force value below 0.02 eV/Å and a
total energy change below 10−7 eV was obtained. It is worth noting
that, contrary to what is usually found, the periodic calculations on
NaCl:Ni+ made with LDA and GGA functionals converge very slowly
and thus are much more expensive than those performed with hybrid
functionals.
For checking the reliability of the calculations, the equilibrium

lattice parameter, a, and band gap, Eg, of pure NaCl have first been
computed using the previously indicated basis sets and functionals.
The results are compared with the experimental values47 extrapolated
to T = 0 K, a = 5.57 Å, and Eg = 8.5 eV.48 As usual,49 LDA and GGA-
PBEsol methods systematically underestimate the a and Eg values,
while the best results are found using the B1WC hybrid functional and
the basis sets of higher quality, pob-TZVP-2012, a = 5.56 Å and Eg =
7.8 eV.
Additional geometry optimizations were carried out by means of the

Quantum-Espresso code,50 which uses delocalized plane waves as basis
set functions. The kinetic energy cutoff for the wave functions was 40
hartree. The exchange-correlation energy has been computed with the
GGA-Perdew−Burke−Ernzerhof (PBE) functional,51 using ultrasoft
pseudopotentials. The k-point grid was reduced to just the Γ point,
although we have verified that with and increase in the grid, the results

do not change. The structures were relaxed until a maximum force
value below 0.03 eV/Å.

2.2. Cluster Calculations. We have also carried out DFT
calculations using the cluster approximation. Calculations have been
performed by means of the Amsterdam Density Functional (ADF)
code,52 version 2010, on clusters of 39, 87, and 123 atoms. To check
the reliability of the present results, calculations have been performed
using different exchange-correlation functionals. Among others, we
have employed the Becke−Perdew (BP86)53,54 and the PBE51

functionals in the GGA. Moreover, some spin-unrestricted calculations
have been performed using the B3LYP hybrid functional55 with 20% of
Hartree−Fock exchange.

All atoms have been described through basis sets of TZP quality
(tripe-ζ Slater-type orbitals plus one polarization function) given in the
program database and large frozen core (1s−2p orbitals for Cl and Na
and 1s−3p for Ni). In the case of the B3LYP hybrid functional, all-
electron calculations have been carried out. In the geometry
optimizations, the positions of all ions, except first-shell Cl− ones
and second neighbors Na+ in ⟨100⟩ directions, have usually been kept
at their lattice positions. To verify the reliability of this approximation,
a calculation on a 123-ion cluster has been carried out, allowing
relaxation of the 33 ions not belonging to the surface. We have verified
that the relaxation of all ions lying outside the Cl− ligands is always
smaller than 1%.

In all cluster calculations, the effects of the Coulomb potential,
VR(r), due to the rest of the lattice on the electrons in the cluster have
been taken into account. Such a potential is calculated in a first step by
means of the Ewald method and is reproduced in a second step by
means of a set of point charges, lying outside the cluster and kept at
their host lattice positions, whose values are fitted to reproduce the
right VR(r) potential inside the cluster.

6,56 For instance, in the case of
the cluster containing 87 atoms (Figure 2), nine ion shells lying

outside the cluster, involving 218 point charges, have been employed
to reproduce VR(r) in 2000 points inside a sphere containing the
cluster. The values of all charges belonging to a given shell are taken to
be the same. We have verified that the difference between the exact
VR(r) potential, calculated through the Ewald method, and that
derived using the nine shells of point charges is always smaller than
0.02%.

As a test of the reliability of the methodology used, the calculated
value for the Na−Cl distance, R0, for the pure NaCl lattice, using the
GGA-BP86 exchange-correlation functional, was 2.824 Å, which differs

Figure 2. 87-atom cluster of NaCl:Ni+ used in cluster calculations.
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by less than 1.4% from the experimental figure.47 Similar results are
found for the other cluster calculations.
More details on the cluster calculations, as well the optimized

geometries, are shown in the Supporting Information.

3. ANALYSIS OF THE CALCULATED Qθ DEPENDENCE
OF E(A1G) AND E(B1G) ENERGIES

The physics of Eg⊗eg JT systems is essentially driven by
expansion of the Hamiltonian in terms of the Qθ (∼3z2 − r2)
and Qε (∼x2 − y2) distortion coordinates11

= + +

+ − +

+ + + −

+

θ θ ε ε

θ θ ε ε θ ε

θ ε θ θ ε

H H W Q W Q

W Q Q W Q Q

W Q Q W Q Q Q

r r

r r
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( ) ( )
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2

2a
2 2
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3 2

(1)

Here H0 is the adiabatic Hamiltonian for octahedral symmetry.
The second and third terms describe the linear JT coupling,
while those involving W2θ(r) and W2ε(r) correspond to the
second-order JT coupling. Because operators W1θ(r) andW2θ(r)
transform like 3z2 − r2 andW1ε(r) andW2ε(r) transform like x2

− y2, these terms act in a different way on the wave functions of
the electronic doublet and thus have a vibronic character. By
contrast, W2a(r) and W3a(r) belong to A1g and the
corresponding terms reflect the elastic and anharmonic
contributions for the eg mode, which are the same for the
two wave functions of the electronic doublet.
When Qε = 0 and Qθ ≠ 0, the octahedron is tetragonally

deformed. The relationship between the Qθ coordinate and the
axial, Rax, and equatorial, Req, metal−ligand distances of the
distorted MX6 complex is given by

= −θQ R R
2
3

( )ax eq (2)

In an Eg⊗eg JT problem, it is found that a minimum and a
saddle point of the global energy surface can be found in the
cross section where Qε = 0 (see Figure 1). In a previous work11

analyzing the different factors contributing to the barrier, B, we
showed that when the Eg term of an octahedral d9 complex
splits because of distortion in the Qθ coordinate, the energy
surfaces of the resulting A1g and B1g electronic states can be
written as
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The linear terms in eqs 3 and 4, involving the V1e constant,
come from the linear W1ε(r) JT operator in eq 1 using, in first-
order perturbation, the f rozen wave functions corresponding to
the octahedral situation (Qθ = Qε = 0). The terms containing
V2a and V3a come from the elastic and anharmonic
contributions in eq 1, respectively. Because Qθ > 0 represents
an elongated octahedron, the anharmonic term favors an
elongated conformation when V3a < 0. The contributions to eqs
3 and 4 involving V2e arise from the second-order JT coupling
in eq 1. With regard to the term VPJT(i) (i = A1g, B1g), it
describes the energy lowering in the A1g and B1g states of the
electronic doublet due to interaction with excited states

through the linear JT operator in eq 1 in second-order
perturbations. This mechanism of energy lowering is sometimes
termed the pseudo-JT effect.11,12

If we only consider the excited states arising from the eg
24s1

configuration for NaCl:Ni+, the difference between VPJT(A1g)
and VPJT(B1g) can be understood by looking at Figure 3, taking

into account that the 4s orbital can only be coupled to the 3z2 −
r2 one through theW1θ(r) operator. As in the B1g state there are
two electrons in the a1g*(∼3z2−r2) orbital and only one in the
A1g state (Figure 3) the energy gain due to this mechanism for
B1g is essentially twice that for A1g.

= =V V V(B ) 2 (A )PJT 1g PJT 1g ds (5)

ϕ ϕ
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|⟨ − | | ⟩|
Δ

θV
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2 2
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2
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Here Δds > 0 means the energy difference between the mainly
4s orbital and a1g*(∼3z2−r2) when Req = Rax. Therefore, the
3d(3z2−r2)−4s vibronic mixing favors a B1g ground state and
thus an elongated geometry. It should be noted that, according
to eqs 3−6, the vibronic 3d(3z2−r2)−4s mixing induces a
sof tening of the force constant especially for the B1g state.
Generally, vibronic interactions are responsible for the sof tening
of a force constant, K, in the electronic ground state. If K < 0
for a nonsymmetric vibration, the structure is no longer
stable.2,6,12,21,57

To obtain reliable values of the quantities involved in eqs 3
and 4, it is useful to deal with the [E(A1g) + E(B1g)]/2 and
[E(A1g) − E(B1g)]/2 quantities11 whose expressions, according
to eqs 3 and 4, are given by

+
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22a
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= − +V V V
1
22e
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If, for instance, the equilibrium geometry of the MX6 complex
(M = d9 ion) placed in a cubic lattice is elongated, there are
three equivalent distortions characterized by {Qθ = ρE; Qε = 0},
{Qθ = −(1/2)ρE; Qε = √3/2ρE}, and {Qθ = −(1/2)ρE; Qε =
−√3/2ρE}. The energy barrier, B, between two equivalent
distortions is just given by the energy difference of a

Figure 3. Pictorial description of the electronic ground state when Qθ

< 0 and Qθ > 0. Because the close 4s level is coupled only to the
3d(3z2−r2) orbital, this vibronic mixing leads to a bigger decrease of
the electronic energy for an elongated octahedron than for a
compressed one.
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compressed complex at its equilibrium geometry (at {Qθ =
−ρC; Qε = 0}) and that corresponding to an elongated one
computed at {Qθ = ρE; Qε = 0}. Thus, according to eqs 3 and 4,
B is given by

ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ

= = − − =

= − − + − − +

− − + +
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2

2e E
2
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2

(11)

Therefore, if ρC = ρE, the barrier is determined by the
anharmonic term and those involving Vds and V2e. It has
previously been shown11 that V2e is negligible with respect to
the pseudo-JT contribution in eqs 3 and 4. Moreover, if in the
present case the pseudo-JT coupling is overwhelmingly
dominated by the 3d(3z2−r2)−4s vibronic mixing, then we
can expect that

=V V
1
22e

eff
ds (12)

It is worth noting that, in order to test the validity of eq 12, Vds
can be estimated from the 4s admixture into the 3d(3z2−r2)
level calculated for different Qθ distortions. Indeed, the |

ϕ0(3z
2−r2)⟩ orbital for Req = Rax becomes |ϕ(3 −͠z r2 2)⟩ when

Qθ ≠ 0, where
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Of course, |ϕ0(4s)⟩ is not a pure 4s wave function of nickel but
involves admixtures of orbitals belonging to ligand ions. For
simplicity, let us write

ϕ α β χ| ⟩ = | ⟩ − | ⟩(4s) 4s0 s s (15)

Here αs
2 reflects the 4s admixture in |ϕ0(4s)⟩, while the second

term shortly describes the other contributions. In the
calculations, it is relatively easy to determine the amount,

f4s(Qθ), of |4s⟩ in |ϕ(3 −͠z r2 2)⟩, which, according to eqs
13−15, is just given by

μ α≡θ θf Q Q( ) ( )4s
2

s
2

(16)

Therefore, Vds can be estimated from the calculated f4s(Qθ)
curve and the Δds value through the expression

α
= − Δθ

θ

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥V

f Q

Q

( )
ds

4s
2

s
2 ds

(17)

Because the results obtained on NaCl:Ni+ are compared with
those11,13,36 for NaCl:Rh2+ where there is only one unpaired
electron in the eg shell, the corresponding expressions for
E(A1g) and E(B1g) are

= − + + + +

+
θ θ θ θE V Q V Q V Q V V Q(A ) [ ]

...

1g 1e 2a
2

3a
3

2e ds
2

(18)

= + + + +θ θ θ θE V Q V Q V Q V Q(B ) ...1g 1e 2a
2

3a
3

2e
2

(19)

Thus if V3a and Vds are both negative, they favor an elongated
geometry for NaCl:Rh2+, where the unpaired electron is placed

in the a1g*(∼3z2−r2) orbital. This situation has been well
observed experimentally.18

4. RESULTS AND DISCUSSION
In a first step, we have calculated the equilibrium Ni+−Cl−
distance, Roct, for the average (3z2 − r2)1.5(x2 − y2)1.5

configuration.58,11 Because in this configuration the two orbitals
are equally populated, there is no JT effect like happens for the
ground state of Ni2+ in octahedral coordination. All performed
calculations using different methods, functionals, and basis sets
lead to similar results. For example, the value Roct = 2.69 Å
derived using a 87-ion cluster, the GGA-BP86 functional,53,54

and relaxing only the ligand shell is found to be only 1 pm
smaller than that coming from a 64-ion supercell calculation
and the hybrid B1WC functional.46 This result points out that
the Na+ → Ni+ substitution induces a small inward relaxation of
4% and suggests an ionic radius of 0.90 Å for Ni+. This figure is
thus consistent with a previous estimation.59 Additional
calculations on a 87-atom cluster have been performed where
the distance R(Ni−Na) between the impurity and closest Na+

ion along ⟨100⟩ directions has also been taken as variable in the
minimization procedure. The calculated equilibrium distance
R(Ni−Na) = 5.59 Å is found to be only 1% smaller than the
lattice parameter a = 5.64 Å. Thus, the mismatch due to the
slightly different ionic radius of Na+ and Ni+ mainly affects the
average Ni+−Cl− distance.
In a second step, we have been working with the real (3z2 −

r2)2(x2 − y2)1 (B1g state) and (3z2 − r2)1(x2 − y2)2 (A1g state)
configurations, paying particular attention to obtaining the
equilibrium geometry for the elongated and compressed
conformations and also the corresponding energy difference,
B. For clarifying this matter, a considerable number of periodic
and cluster calculations have been performed by varying the
basis set, the employed functional, and the cluster size. As a
salient feature, we have found that in all performed calculations
the |B| value for NaCl:Ni+ is less than 160 cm−1, thus certainly
smaller than the values derived for NaCl:Rh2+ (B = 511
cm−1),11,13 NaCl:Ag2+ (B = 500 cm−1), or KCl:Ag2+ (B = 1024
cm−1).35

Values of the equilibrium Req and Rax distances for both the
B1g and A1g states and the barrier B derived through
representative periodic supercell and cluster calculations are
gathered in Tables 1 and 2, respectively. In the case of periodic
calculations, most of the values obtained with the best basis set
give rise to positive B values in the range 80−120 cm−1. We
have verified that when the quality of the basis set is reduced,
negative B values are more frequently encountered.
A similar picture emerges when looking at cluster

calculations. Interestingly, the obtained value of B is found to
be little dependent on the cluster size, and so in the clusters
containing 39, 87, and 123 atoms, the value of B is always lying
in the range 70−96 cm−1, keeping the same functional and basis
set (Table 2). As happens in the case of periodic calculations, a
change of the functional can lead to the appearance of negative
B values although |B| is found to be always smaller than 160
cm−1. In particular, this situation is found using the B3LYP
functional in a spin-unrestricted calculation such as is shown in
Table 2. It is worth noting that because |B| is small it is not
surprising that some calculations yield negative B values. A
similar situation is encountered for CaO:Ag2+, where
experimental results60 are consistent with a static JT effect
and an elongated equilibrium geometry while ab initio
calculations61,13 gave B = −135 cm−1.
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As to the experimental g tensor of NaCl:Ni+ at T = 20 K, the
values g∥ = 2.86 and g⊥ = 2.10 prove15 that the unpaired
electron is placed in the b1g*(∼x2−y2) orbital and thus B is
positive.
With regard to the equilibrium Req and Rax values calculated

for both the B1g and A1g states using different procedures
(Tables 1 and 2), it can be seen that there is a reasonable
agreement among them. Nevertheless, variation of the
calculated Req and Rax values reported on Tables 1 and 2
shows differences up to 4%. For comparison, cluster and
periodic supercell calculations on MgO:Cr3+ using different
types of functionals and changing the number of involved ions
all lead56 to the same value of the Cr3+−O2− distance within
0.8%. This underlines the difficulties for studying the Ni+

impurity in comparison with Cr3+, where the 3d−4s separation
amounts19 to 14 eV.
Let us now focus on the calculated values of d−d transitions

for NaCl:Ni+ at the corresponding equilibrium geometry. The
results for the a1g*(∼3z2−r2) → b1g*(∼x2−y2), b2g*(∼xy) →
b1g*, and eg*(∼xz;yz) → b1g* transition energies (called Δ0,
Δ1, and Δ2, respectively) are collected in Table 3 together with
the energy for the first allowed charge-transfer transition eu(π)

→ b1g*. Such figures are compared with experimental values
measured62−64,35 for CdCl2:Cu

2+ and KCl:Ag2+. It can be
noticed that Δ0, Δ1, and Δ2 values are much smaller for
NaCl:Ni+ than for other divalent 3d9 and 4d9 cations, stressing
the singularity of the monovalent Ni+ ion. For instance, the
calculated Δ1 value for NiCl6

5− in NaCl is around one-third that
measured62 for the CuCl6

4− complex in CdCl2, pointing out
that 10Dq decreases upon passing from trivalent to divalent
impurities65 and especially from the last ones to monovalent
cations. Along this line, a value Δ1 = 4700 cm−1 was estimated34

for AgCl:Ni+.
Although no optical measurements on the d−d transitions of

Ni+ impurities in insulators have hitherto been reported, the
results collected in Table 3 are qualitatively consistent with the
high g∥ − g0 = 0.86 value measured15 for NaCl:Ni+ compared
with g∥ − g0 = 0.34 derived66 for CdCl2:Cu

2+ because g∥ − g0
depends in second-order perturbation67,68 on (Δ1)

−1. Fur-
thermore, using the general expressions for g∥ − g0 and g⊥ − g0
given in ref 68, the geometry optimized in the periodic
PW1PW calculations, the Δ1 and Δ2 values of Table 3, and the
covalency coefficients also derived from the present calcu-
lations, we have found g∥ − g0 = 0.89 and g⊥ − g0 = 0.16. Such
values are thus not far from the experimental figures.15 With
regard to the covalency, if we simply write the normalized wave
function of the antibonding b1g*(∼x2−y2) orbital as

α β χ| * − ⟩ = | − ⟩ − | ⟩x y x yb ( ) 3d( )1g
2 2 2 2

L (20)

we have found α2 = 0.90 for NiCl6
5− in NaCl, thus pointing out

that the unpaired electron is essentially residing on the central
cation, while a higher covalency is obtained68 for CuCl6

4− (α2 =
0.70) and especially for AgCl6

4− where α2 = 0.50.69 In eq 20,
|χL⟩ shortly denotes a linear combination of 3p and 3s orbitals
of equatorial Cl− ligands. The increase of covalency upon
passing from NiCl6

5− to AgCl6
4− is qualitatively consistent with

the significant decrease of the energy of the first allowed
charge-transfer transition eu(π) → b1g* (Table 3). Accordingly,
the optical electronegativity,70,28,71 xopt, of Ni+ should be
around 1.1. The singularity of the monovalent Ni+ ion is
obvious when comparing this value with the empirical values
estimated by Jørgensen70 for Ni2+ and Cu2+, xopt = 2.2 and 2.4,
respectively, or the obtained69,72 for Ag2+ and Rh2+, xopt = 2.8
and 2.5, respectively.
Concerning the barrier, B, a rough estimation of this quantity

for NaCl:Ni+ can be obtained from temperature Tt = 35 K at
which the static spectrum starts to disappear15 in conjunction

Table 1. Results of Periodic Supercell Calculations for the
NaCl:Ni+ Center in the B1g and A1g States, Using Different
Functionals and Basis Setsa

basis set functional state Req Rax Qθ B

GTO hybrid PW1PW B1g 2.560 2.845 0.329 +120
A1g 2.723 2.529 −0.224

GTO hybrid B1WC B1g 2.523 2.828 0.352 +80
A1g 2.679 2.497 −0.210

GTO LDA B1g 2.487 2.784 0.343 +112
A1g 2.625 2.454 −0.197

GTO GGA-PBEsol B1g 2.512 2.811 0.345 −160
A1g 2.667 2.460 −0.240

PW GGA-PBE B1g 2.503 2.886 0.442 +8
A1g 2.730 2.458 −0.314

aHere GTO corresponds to the recently published pob-TZVP-2012
Gaussian basis set38 for the CRYSTAL code, while PW means a plane-
wave basis set in the Quantum-Espresso code.50 Req and Rax are the
equilibrium equatorial and axial Ni+−Cl− distances (in Å) and B is the
energy barrier (in cm−1) between the A1g and B1g states. Values of the
Qθ coordinate at equilibrium (in Å) are also reported.

Table 2. Representative Values of the Equilibrium Req and
Rax Distances (in Å) for Both the B1g and A1g States and the
Energy Barrier, B (in cm−1), for NaCl:Ni+ Calculated by
Means of Clusters of 39, 87, and 123 Atomsa

size functional state Req Rax Qθ B

39 GGA-BP86 B1g 2.562 2.901 0.391 +96
A1g 2.783 2.491 −0.34

87 GGA-BP86 B1g 2.575 2.858 0.327 +74
A1g 2.767 2.497 −0.312

123 GGA-BP86 B1g 2.563 2.873 0.358 +88
A1g 2.767 2.483 −0.327

87 GGA-PBE B1g 2.589 2.870 0.324 +55
A1g 2.772 2.526 −0.28

87 B3LYP B1g 2.648 2.861 0.25 −140
A1g 2.797 2.595 −0.23

aThese results have been obtained using the BP86 functional53,54 and
also the PBE51 and B3LYP55 functionals. The value of the Qθ

coordinate at equilibrium (in Å) is also reported.

Table 3. Values of the Three d−d Transition Energies and
the eu(π) →b1g* Charge-Transfer Transition Energy for
NaCl:Ni+ Calculated at the Ground-State Equilibrium
Geometrya

Δ0 Δ1 Δ2 eu(π) → b1g*

NaCl:Ni+ (BP86) 1806 3725 3975 56445
NaCl:Ni+ (PW1PW) 1530 3300 3470 71000
CdCl2:Cu

2+ 6372 9437 10970 25510
KCl:Ag2+ 12500 15900 17820 21700

aΔ0, Δ1, and Δ2 mean the energies of the transitions from respectively
a1g*(∼3z2−r2), b2g*(∼xy), and eg*(∼xz;yz) antibonding orbitals to
the b1g*(∼x2−y2) one. The results obtained for DFT cluster
calculations on NaCl:Ni+ using BP86 (Req = 2.563 Å; Rax = 2.873
Å) and PW1PW (Req = 2.560 Å; Rax = 2.845 Å) functionals are both
reported and compared to experimental values for D4h CuCl6

4−62,63

and AgCl6
4− complexes.64 All energies are in cm−1 units.
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with the calculated value35 B = 500 cm−1 for NaCl:Ag2+ and the
corresponding experimental value16 Tt = 95 K also measured in
X-band EPR experiments. Let us denote by ν the jump
frequency between two equivalent minima separated by the
barrier B. Assuming an Arrhenius type law for the temperature
dependence of ν, it can be written as

ν ν= −e B kT
0

/
(21)

The transition between a static EPR spectrum and an average
isotropic one requires that9,35

ν β≈ − ⊥h g g H( ) (22)

where β denotes the Bohr magneton. Then, because H ≈ 300
mT (X band) and g∥ − g⊥ = 0.155 for NaCl:Ag2+,16 if we
assume that the ratio ν0(NaCl:Ag

2+)/ν0(NaCl:Ni
+) lies roughly

between 1 and 2, we get B(NaCl:Ni+) ≈ 120 cm−1. Thus, the
positive B values obtained in periodic and cluster calculations
(Tables 1 and 2) are compatible with this estimation.
A central matter in this research is to understand why the B

value for NaCl:Ni+ is much smaller than those derived for Ag2+-
doped NaCl and KCl35 and for NaCl:Rh2+.11,13 To achieve this
goal, we have analyzed the results derived for NaCl:Ni+ with a
87-ion cluster (Figure 3), giving B = 74 cm−1 (Table 2), by
means of the procedure explained in section 3.11 It is worth
noting that the value Qθ = 0.327 Å derived for the elongated
conformation of NaCl:Ni+ (Table 2) is practically coincident
with Qθ = 0.320 Å obtained11,13,36 for NaCl:Rh2+. This implies
that knowledge of the magnitude of the distortion alone does
not allow prediction of the value of B.
Seeking to clear out this matter, the calculated E(A1g;Qθ) and

E(B1g;Qθ) curves, displayed in Figure 4, have been explored

through the procedure explained in section 3.11 From the
calculated [E(A1g) + E(B1g)]/2 and [E(A1g) − E(B1g)]/2
quantities, the values of V1e, V2a, V3a, and V2e

eff have been
determined. The main results obtained for NaCl:Ni+ are
collected in Table 4, where they are compared to those11,13,36,52

for NaCl:Rh2+. It can be noticed that while for NaCl:Rh2+ the
curvature at the minimum of the compressed geometry is

clearly higher than that for the elongated conformation,58 this is
not true for NaCl:Ni+.
With regard to calculated values, V1e = 0.32 eV/Å derived for

NaCl:Ni+ is about 4 times smaller than V1e = 1.40 eV/Å
previously derived11 for NaCl:Rh2+ (Table 4). This reduction is
qualitatively consistent with that experienced by 10Dq upon
passing from divalent cations to a monovalent cation like Ni+.
On the other hand, the value V1e = 0.32 eV/Å is essentially
compatible with the figure Δ0 = 1530 cm−1 given in Table 3
and Qθ = 0.327 Å because in a first approximation11,12

Δ = θV Q20 1e (23)

It is worth noting that while in comparison to NaCl:Rh2+ the
values of V2a and |V3a| obtained for NaCl:Ni+ are significantly
reduced, this is not the case for the V2e

eff quantity. As the
obtained value for NaCl:Ni+, V2e

eff = −0.16 eV/Å2, is negative,
this is qualitatively consistent with the assumption that V2e

eff =
Vds/2 mainly arises from the 3d(3z2−r2)−4s vibronic coupling
because, according to eq 6, Vds < 0. Moreover, the term
involving Vds in eq 12 gives rise to a barrier B = 240 cm−1.
As a salient feature, the sign of the anharmonic coefficient,

V3a = 0.26 eV/Å3, is found to be positive for NaCl:Ni+, a result
that is thus completely at variance with what is found for
NaCl:Rh2+, where11 V3a = −1.1 eV/Å3. This relevant result just
means that the equilibrium geometry for NaCl:Ni+ would be
compressed if only the anharmonic contribution is taken into
account. More precisely, with the Qθ values given in Table 2,
the contribution to the barrier from the V3a(ρC

3 + ρE
3) term in

eq 12 is equal to −135 cm−1, while that coming from the first
two terms involving the V1e and V2a coefficients is equal only to
−24 cm−1. These results thus point out that the elongated
geometry of the NiCl6

5− complex in NaCl:Ni+ is mainly due to
the 3d(3z2−r2)−4s vibronic coupling, although its contribution
to B is canceled to an important extent by that arising from the
anharmonicity. This explains albeit qualitatively the low value of
B for NaCl:Ni+ in comparison with those obtained11,13,35 for
NaCl:Rh2+, NaCl:Ag2+, and KCl:Ag2+.
Seeking to test the reliability of the V2e

eff = Vds/2 assumption,
we have estimated Vds by means of eqs 16 and 18. From our
calculations, we have determined the amount, f4s(Qθ), of |4s⟩

admixture into |ϕ(3 −͠z r2 2)⟩. The results in Figure 5 show that
f4s(Qθ) is actually proportional to Qθ

2 with f4s(Qθ)/Qθ
2 = 0.085

Å−2. On the other hand, the |4s⟩ admixture in |ϕ0(4s)⟩ is found
to be αs

2 = 0.70, while the present calculations give Δds = 2.5
eV. Therefore, according to eqs 16 and 18, we estimate Vds =
−0.30 eV/Å2 and thus Vds/2 is close to the value V2e

eff = −0.15
eV/Å2 derived from analysis of the results collected in Table 3.
This analysis thus strongly supports that the elongated

Figure 4. Picture of the calculated total energy as a function of the Qθ

coordinate for B1g and A1g electronic states of NaCl:Ni+. The results
shown here have been derived through a calculation on the 87 ions
cluster using the BP86 functional.53,54

Table 4. Values of V1e, V2a, V3a, and V2e
eff Vibronic Constants

(in eV/Å, eV/Å2, eV/Å3, and eV/Å2, Respectively) and the
Barrier, B (in cm−1), Derived for NaCl:Ni+ from the
Calculation of the 87-Atom Cluster with the GGA-BP86
Functionala

system V1e V2a V3a V2e
eff EJT (cm−1) B (cm−1)

NaCl:Ni+ 0.32 0.90 0.26 −0.16 534 72
NaCl:Rh2+ 1.40 2.8 −1.1 −0.21 1830 511

aSuch data are compared to those previously obtained11,13 for
NaCl:Rh2+. The value of the JT energy, EJT, obtained for NaCl:Ni+

is also given and compared to that recently found for NaCl:Rh2+ by
two different groups.13,36.
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geometry obtained for NaCl:Ni+ is mainly due to the 3d(3z2−
r2)−4s vibronic coupling.
A central point in the present analysis is to understand why

the sign of the anharmonic parameter, V3a, is found to be
positive in NaCl:Ni+, while it is clearly negative for NaCl:Rh2+.
As has been pointed out before, in NaCl:Rh2+ the RhCl6

4−

complex is practically elastically decoupled from the rest of the
lattice,61,21 while this situation is likely not to be true for
NaCl:Ni+, where Ni+ and Na+ are both monovalent ions. A
simple model61,21 for clarifying the two different situations is
depicted in Figure 6. In such a figure, a given ligand, X, is
attached to the impurity ion, M, as well as to the closest A host
lattice cation along a ⟨100⟩ direction. Let us now consider the

motion of the ligands only along the M−X directions, keeping
M and A f ixed. In such a case, when a ligand is not in its
equilibrium position, there are two springs that are activated. If
we consider, in principle, a single M−X−A unit, then the
associated potential energy can be described by

− − = + ′ − + ′U k u k u g u g u(M X A)
1
2

( )
1
2

( ) ( ) ( )p X
2

X
2

X
3

X
3

(24)

In this expression, uX describes the separation of the ligand
coordinate along a ⟨100⟩ direction from its equilibrium
position. If uX > 0, it means that the ligand is moving away
from the impurity and thus approaching the A ion. If we assume
that the anharmonicity in both the M−X and X−A bonds favors
the elongation of both springs, then g and g′ must be positive. It
should be recalled that in a simple diatomic molecule g > 0 is
actually responsible for a positive thermal expansion coefficient.
For this reason, the total anharmonic energy of the M−X−A
unit favors a compressed situation in the M−X bond, provided
that g′ > g. Let us now consider a Qθ distortion involving the six
ligands. Because the anharmonic energy of a single M−X−A
unit is equal to (g′ − g)uX

3, V3a is simply given by

= ′ −V g g
1
12

( )3a (25)

When the complex is elastically decoupled from the rest of
the lattice, this implies that k ≫ k′ and g ≫ g′ and then V3a is
necessarily negative, pointing out that an elongation described
by Qθ yields a smaller energy increase than a −Qθ compression.
By contrast, in a case like NaCl:Ni+, where both monovalent
ions have a similar ionic radius, the conditions k ≫ k′ and g ≫
g′ are not necessarily fulfilled.
Seeking to clear out this relevant matter we have estimated

from the present calculations the values of the two constants k
and k′ in eq 21. While k′/k = 0.28 for NaCl:Rh2+,61 a much
higher value k′/k = 2.9 has been obtained for NaCl:Ni+. This
result strongly supports that in the last case the NiCl6

5−

complex is elastically coupled to the rest of the lattice and
thus it can reasonably be expected that g′ > g. This reasoning
thus explains why V3a is negative for NaCl:Rh

2+ while it can be
positive for the present case.

5. FINAL REMARKS
According to the present results, the understanding of the
actual geometry displayed by a seemingly simple JT system is
certainly a nontrivial problem requiring a detailed quantitative
study. Indeed, it has been shown that for NaCl:Ni+ the two
main contributions to the barrier have an opposite sign and thus
the calculated |B| value is certainly smaller than B ≈ 500 cm−1

obtained for NaCl:M2+ (M = Rh, Ag) and B = 1024 cm−1

derived11,13,35 for KCl:Ag2+. Because of this special situation, it
is not surprising to find that some calculations on NaCl:Ni+

lead to negative B values, although |B| is always smaller than
160 cm−1.
As a salient feature, the present study supports that the

equilibrium elongated geometry observed experimentally for
NiCl6

5− in NaCl is mainly due to the 3d(3z2−r2)−4s vibronic
mixing. To our knowledge, NaCl:Ni+ is the first JT system in
which it has quantitatively been demonstrated that the
dominant contribution to the barrier arises from such a vibronic
mixing. This result thus stresses that the barrier in JT systems
cannot be understood at all, neglecting the changes of the
electronic density accompanying the small distortions.

Figure 5. Calculated values of f4s as a function of the Qθ coordinate.
The f4s quantity reflects the amount of |4s⟩ wave function found in the
a1g*(∼3z2−r2) orbital.

Figure 6. Model system for discussing the anharmonic energy of a Qθ

distortion. The ligands move along ⟨100⟩ directions, while the A and
M atoms are fixed.
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The present results for NaCl:Ni+ are thus fully different from
those found for NaCl:Rh2+11 or KCl:Ag2+,35 where the barrier
comes mainly from the anharmonicity. Therefore, in NaCl:Ni+

the electronic structure of the impurity plays a key role for
understanding the equilibrium geometry. Indeed, in the case of
f ree ions, the nd−(n+1)s separation is equal19 to 2 eV for Ni+

(n = 3), 8 eV for Cu2+ (n = 3), 9 eV for Rh2+ (n = 4), 9 eV for
Ag2+ (n = 4), and 14 eV for Cr3+ (n = 3).
It is worth noting that EPR data prove that in K2MgF4:Ni

+

the local geometry of NiF6
5− corresponds to an elongated

octahedron,73 while in K2ZnF4:Cu
2+, CuF6

4− is, however,
compressed.74,22 Again the small 3d−4s separation in Ni+ has
been shown to play a key role for explaining this surprising
situation.75

The present analysis supports that in NaCl:Ni+ the
anharmonicity of the eg mode alone favors a compressed
rather than an elongated geometry. This fact just reflects that
the NiCl6

5− complex is not elastically decoupled from the rest
of the lattice like when Na+ is replaced by a smaller divalent
cation. This situation is thus quite different from that of f ree
molecules subject to the JT effect as discussed in refs 76 and 77.
Although EPR work carried out on KMgF3:Ni

+31 or
CsCaF3:Ni

+32 proves that the JT center formed in these
systems exhibits an elongated geometry, it has been assumed by
several authors that in LiF:Ni+ and NaF:Ni+ such a center
displays a compressed geometry.29,67,78,79 Nevertheless, there
are serious arguments against the correctness of this assignment
as discussed in refs 80 and 81.
Because of the low values of the barrier in NaCl:Ni+, it is

interesting to explore why coherent tunneling is not observed
instead of a static JT effect. When coherent tunneling among
equivalent distortions takes place, the EPR spectrum exhibits a
cubic rather than a tetragonal pattern, a situation termed the
dynamic JT effect.9−14 The unavoidable presence of random
strains in any real crystal very often destroys the coherence,9

and then an EPR spectrum characteristic of a static JT effect
with D4h symmetry is usually observed for d9 ions in cubic
halides.10 Calling δs the energy splitting induced by a tetragonal
random strain on the vibronic doublet, the occurrence of a
dynamic JT effect requires that 3Γ > δs, where 3Γ is the
tunneling splitting9,13,14 and δs is thus a sample-dependent
quantity. Because up to now no direct measurement of 3Γ has
been performed for MgO:Cu2+, where a dynamic JT effect has
been observed experimentally,82 the situation on the actual
value of 3Γ and the ratio δs/3Γ is still controversial. In this
sense, Reynolds et al. obtained82 a ratio δs/3Γ = 0.1 from
analysis of the available EPR data, while more recently Riley et
al.83 give δs/3Γ = 0.5. On the other hand, ab initio results on
MgO:Cu2+ give13,14 3Γ = 235 cm−1, while the calculated 3Γ
value13,14 for the two other cases60,82 (MgO:Ag2+ and
CaO:Cu2+), where a dynamic JT effect has actually been
observed, is always higher than 50 cm−1. Furthermore, a
theoretical study carried out on MgO:Cu2+ points out that the
dynamic JT effect is already destroyed14 when δs/3Γ > 0.2. This
standpoint is consistent with the observation60 of a static JT
effect in CaO:Ag2+, where the calculated 3Γ value13,14 is equal
to 30 cm−1.
With regard to NaCl:Ni+, the calculated kinetic energy for

the vibronic ground state13,14 when B = 0, Ek, is equal to ℏ2/
8MXρE

2 = 1.2 cm−1, which is certainly smaller than the actual
value of the barrier B. Here MX is the ligand mass and ρE
corresponds to the equilibrium Qθ value for the B1g state.

13,14

For this reason, it can reasonably be expected that the actual 3Γ

for NaCl:Ni+ will be clearly smaller than 3Γ = 8Ek = 9 cm−1

calculated13,14 when there is no barrier at all. Thus, the present
analysis and the typical values14 of δs (∼10 cm−1) strongly favor
the observation of a static JT effect in NaCl:Ni+ in agreement
with the experimental data.15

The present results stress the importance of ab initio
calculations for reaching a microscopic understanding of
mechanisms responsible for the observed equilibrium geome-
try. In this sense, most of the experimental information on
systems displaying a static JT effect corresponds to the
electronic ground state. Therefore, although the usual EPR
fingerprints67 of elongated [g∥ − g0 ≈ 4(g⊥ − g0)] and
compressed (g⊥ − g0 > 0 and g∥ − g0 ≈ 0) conformations for d9

impurities are very different, it is not easy to know the small
energy difference between them only from the experimental
data. On the other hand, calculations provide insight into the
parameters involved in the usual ef fective JT Hamiltonians, thus
avoiding unnecessary speculations in the models.
In conclusion, analysis of the ab initio calculations in JT

systems provides very crucial information on the subtle origin
of the equilibrium geometry. Further work along this line is
now underway.
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