1,665 research outputs found
The XMM-Newton serendipitous survey. VII. The third XMM-Newton serendipitous source catalogue
Thanks to the large collecting area (3 x ~1500 cm at 1.5 keV) and wide
field of view (30' across in full field mode) of the X-ray cameras on board the
European Space Agency X-ray observatory XMM-Newton, each individual pointing
can result in the detection of hundreds of X-ray sources, most of which are
newly discovered. Recently, many improvements in the XMM-Newton data reduction
algorithms have been made. These include enhanced source characterisation and
reduced spurious source detections, refined astrometric precision, greater net
sensitivity and the extraction of spectra and time series for fainter sources,
with better signal-to-noise. Further, almost 50\% more observations are in the
public domain compared to 2XMMi-DR3, allowing the XMM-Newton Survey Science
Centre (XMM-SSC) to produce a much larger and better quality X-ray source
catalogue. The XMM-SSC has developed a pipeline to reduce the XMM-Newton data
automatically and using improved calibration a new catalogue version has been
produced from XMM-Newton data made public by 2013 Dec. 31 (13 years of data).
Manual screening ensures the highest data quality. This catalogue is known as
3XMM. In the latest release, 3XMM-DR5, there are 565962 X-ray detections
comprising 396910 unique X-ray sources. For the 133000 brightest sources,
spectra and lightcurves are provided. For all detections, the positions on the
sky, a measure of the quality of the detection, and an evaluation of the X-ray
variability is provided, along with the fluxes and count rates in 7 X-ray
energy bands, the total 0.2-12 keV band counts, and four hardness ratios. To
identify the detections, a cross correlation with 228 catalogues is also
provided for each X-ray detection. 3XMM-DR5 is the largest X-ray source
catalogue ever produced. Thanks to the large array of data products, it is an
excellent resource in which to find new and extreme objects.Comment: 23 pages, version accepted for publication in A&
The Spectral Energy Distribution of Fermi bright blazars
(Abridged) We have conducted a detailed investigation of the broad-band
spectral properties of the \gamma-ray selected blazars of the Fermi LAT Bright
AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray
spectra with Swift, radio, infra-red, optical and other hard X-ray/gamma-ray
data, collected within three months of the LBAS data taking period, we were
able to assemble high-quality and quasi-simultaneous Spectral Energy
Distributions (SED) for 48 LBAS blazars.The SED of these gamma-ray sources is
similar to that of blazars discovered at other wavelengths, clearly showing, in
the usual Log - Log F representation, the typical broad-band
spectral signatures normally attributed to a combination of low-energy
synchrotron radiation followed by inverse Compton emission of one or more
components. We have used these SEDs to characterize the peak intensity of both
the low and the high-energy components. The results have been used to derive
empirical relationships that estimate the position of the two peaks from the
broad-band colors (i.e. the radio to optical and optical to X-ray spectral
slopes) and from the gamma-ray spectral index. Our data show that the
synchrotron peak frequency is positioned between 10 and
10 Hz in broad-lined FSRQs and between and Hz in
featureless BL Lacertae objects.We find that the gamma-ray spectral slope is
strongly correlated with the synchrotron peak energy and with the X-ray
spectral index, as expected at first order in synchrotron - inverse Compton
scenarios. However, simple homogeneous, one-zone, Synchrotron Self Compton
(SSC) models cannot explain most of our SEDs, especially in the case of FSRQs
and low energy peaked (LBL) BL Lacs. (...)Comment: 85 pages, 38 figures, submitted to Ap
The INTEGRAL/IBIS AGN catalogue I: X-ray absorption properties versus optical classification
In this work we present the most comprehensive INTEGRAL AGN sample which
lists 272 objects. Here we mainly use this sample to study the absorption
properties of active galaxies, to probe new AGN classes and to test the AGN
unification scheme. We find that half (48%) of the sample is absorbed while the
fraction of Compton thick AGN is small (~7%). In line with our previous
analysis, we have however shown that when the bias towards heavily absorbed
objects which are lost if weak and at large distance is removed, as it is
possible in the local Universe, the above fractions increase to become 80% and
17%. We also find that absorption is a function of source luminosity, which
implies some evolution in the obscuration properties of AGN. Few peculiar
classes, so far poorly studied in the hard X-ray band, have been detected and
studied for the first time such as 5 XBONG, 5 type 2 QSOs and 11 LINERs. In
terms of optical classification, our sample contains 57% of type 1 and 43% of
type 2 AGN; this subdivision is similar to that found in X-rays if unabsorbed
versus absorbed objects are considered, suggesting that the match between
optical and X-ray classification is overall good. Only a small percentage of
sources (12%) does not fulfill the expectation of the unified theory as we find
22 type 1 AGN which are absorbed and 10 type 2 AGN which are unabsorbed.
Studying in depth these outliers we found that most of the absorbed type 1 AGN
have X-ray spectra characterized by either complex or warm/ionized absorption
more likely due to ionized gas located in an accretion disk wind or in the
biconical structure associated to the central nucleus, therefore unrelated to
the toroidal structure. Among 10 type 2 AGN which resulted to be unabsorbed, at
most 3-4% is still eligible to be classified as a "true" type 2 AGN.Comment: 21 pages, 6 figures, 5 tables. Accepted for publication on MNRAS.
arXiv admin note: text overlap with arXiv:0709.2077 by other author
On the origin of M81 group extended dust emission
Galactic cirrus emission at far-infrared wavelengths affects many extragalactic observations. Separating this emission from that associated with extragalactic objects is both important and difficult. In this paper we discuss a particular case, the M81 group, and the identification of diffuse structures prominent in the infrared, but also detected at optical wavelengths. The origin of these structures has previously been controversial, ranging from them being the result of a past interaction between M81 and M82 or due to more local Galactic emission. We show that over an order of a few arcmin scales, the far-infrared (Herschel 250 mu m) emission correlates spatially very well with a particular narrow-velocity (2-3 km s(-1)) component of the Galactic HI. We find no evidence that any of the far-infrared emission associated with these features actually originates in the M81 group. Thus we infer that the associated diffuse optical emission must be due to galactic light-back scattered off dust in our galaxy. Ultraviolet observations pick out young stellar associations around M81, but no detectable far-infrared emission. We consider in detail one of the Galactic cirrus features, finding that the far-infrared HI relation breaks down below arcmin scales and that at smaller scales there can be quite large dust-temperature variation
Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts
We outline the scientific motivation behind a search for gravitational waves
associated with short gamma ray bursts detected by the InterPlanetary Network
(IPN) during LIGO's fifth science run and Virgo's first science run. The IPN
localisation of short gamma ray bursts is limited to extended error boxes of
different shapes and sizes and a search on these error boxes poses a series of
challenges for data analysis. We will discuss these challenges and outline the
methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on
Gravitational Waves, July 2011, Cardiff, U
Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts
Aims. A transient astrophysical event observed in both gravitational wave
(GW) and electromagnetic (EM) channels would yield rich scientific rewards. A
first program initiating EM follow-ups to possible transient GW events has been
developed and exercised by the LIGO and Virgo community in association with
several partners. In this paper, we describe and evaluate the methods used to
promptly identify and localize GW event candidates and to request images of
targeted sky locations.
Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to
Oct 20 2010), a low-latency analysis pipeline was used to identify GW event
candidates and to reconstruct maps of possible sky locations. A catalog of
nearby galaxies and Milky Way globular clusters was used to select the most
promising sky positions to be imaged, and this directional information was
delivered to EM observatories with time lags of about thirty minutes. A Monte
Carlo simulation has been used to evaluate the low-latency GW pipeline's
ability to reconstruct source positions correctly.
Results. For signals near the detection threshold, our low-latency algorithms
often localized simulated GW burst signals to tens of square degrees, while
neutron star/neutron star inspirals and neutron star/black hole inspirals were
localized to a few hundred square degrees. Localization precision improves for
moderately stronger signals. The correct sky location of signals well above
threshold and originating from nearby galaxies may be observed with ~50% or
better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not
included in v1. Accepted for publication in Astronomy & Astrophysic
Multiparametric determination of genes and their point mutations for identification of beta-lactamases
More than half of all currently used antibiotics belong to the beta-lactam group, but their clinical effectiveness is severely limited by antibiotic resistance of microorganisms that are the causative agents of infectious diseases. Several mechanisms for the resistance of Enterobacteriaceae have been established, but the main one is the enzymatic hydrolysis of the antibiotic by specific enzymes called beta-lactamases. Beta-lactamases represent a large group of genetically and functionally different enzymes of which extended-spectrum beta-lactamases (ESBLs) pose the greatest threat. Due to the plasmid localization of the encoded genes, the distribution of these enzymes among the pathogens increases every year. Among ESBLs the most widespread and clinically relevant are class A ESBLs of TEM, SHV, and CTX-M types. TEM and SHV type ESBLs are derived from penicillinases TEM-1, TEM-2, and SHV-1 and are characterized by several single amino acid substitutions. The extended spectrum of substrate specificity for CTX-M beta-lactamases is also associated with the emergence of single mutations in the coding genes. The present review describes various molecular-biological methods used to identify determinants of antibiotic resistance. Particular attention is given to the method of hybridization analysis on microarrays, which allows simultaneous multiparametric determination of many genes and point mutations in them. A separate chapter deals with the use of hybridization analysis on microarrays for genotyping of the major clinically significant ESBLs. Specificity of mutation detection by means of hybridization analysis with different detection techniques is compared
SPIRE imaging of M82: cool dust in the wind and tidal streams
M82 is a unique representative of a whole class of galaxies, starbursts with
superwinds, in the Very Nearby Galaxy Survey with Herschel. In addition, its
interaction with the M81 group has stripped a significant portion of its
interstellar medium from its disk. SPIRE maps now afford better
characterization of the far-infrared emission from cool dust outside the disk,
and sketch a far more complete picture of its mass distribution and energetics
than previously possible. They show emission coincident in projection with the
starburst wind and in a large halo, much more extended than the PAH band
emission seen with Spitzer. Some complex substructures coincide with the
brightest PAH filaments, and others with tidal streams seen in atomic hydrogen.
We subtract the far-infrared emission of the starburst and underlying disk from
the maps, and derive spatially-resolved far-infrared colors for the wind and
halo. We interpret the results in terms of dust mass, dust temperature, and
global physical conditions. In particular, we examine variations in the dust
physical properties as a function of distance from the center and the wind
polar axis, and conclude that more than two thirds of the extraplanar dust has
been removed by tidal interaction, and not entrained by the starburst wind.Comment: accepted in A&A Herschel special issu
Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach
Background: In this study, we quantified age-related changes in the time-course of face processing
by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our
approach does not rely on peak measurements and can provide a more sensitive measure of
processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded
discrimination task between two faces. The phase spectrum of these faces was manipulated
parametrically to create pictures that ranged between pure noise (0% phase information) and the
undistorted signal (100% phase information), with five intermediate steps.
Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was
higher, in younger than older observers. ERPs from each subject were entered into a single-trial
general linear regression model to identify variations in neural activity statistically associated with
changes in image structure. The earliest age-related ERP differences occurred in the time window
of the N170. Older observers had a significantly stronger N170 in response to noise, but this age
difference decreased with increasing phase information. Overall, manipulating image phase
information had a greater effect on ERPs from younger observers, which was quantified using a
hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus
parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at
multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower
processing in older observers starting around 120 ms after stimulus onset. This age-related delay
increased over time to reach a maximum around 190 ms, at which latency younger observers had
around 50 ms time lead over older observers.
Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual
system sensitivity to image structure, the current study demonstrates that older observers
accumulate face information more slowly than younger subjects. Additionally, the N170 appears to
be less face-sensitive in older observers
Quantitative Comparison of Effects of Dofetilide, Sotalol, Quinidine, and Verapamil between Human Ex vivo Trabeculae and In silico Ventricular Models Incorporating Inter-Individual Action Potential Variability
Background: In silico modeling could soon become a mainstream method of pro-arrhythmic risk assessment in drug development. However, a lack of human-specific data and appropriate modeling techniques has previously prevented quantitative comparison of drug effects between in silico models and recordings from human cardiac preparations. Here, we directly compare changes in repolarization biomarkers caused by dofetilide, dl-sotalol, quinidine, and verapamil, between in silico populations of human ventricular cell models and ex vivo human ventricular trabeculae. Methods and Results: Ex vivo recordings from human ventricular trabeculae in control conditions were used to develop populations of in silico human ventricular cell models that integrated intra- and inter-individual variability in action potential (AP) biomarker values. Models were based on the O'Hara-Rudy ventricular cardiomyocyte model, but integrated experimental AP variability through variation in underlying ionic conductances. Changes to AP duration, triangulation and early after-depolarization occurrence from application of the four drugs at multiple concentrations and pacing frequencies were compared between simulations and experiments. To assess the impact of variability in IC50 measurements, and the effects of including state-dependent drug binding dynamics, each drug simulation was repeated with two different IC50 datasets, and with both the original O'Hara-Rudy hERG model and a recently published state-dependent model of hERG and hERG block. For the selective hERG blockers dofetilide and sotalol, simulation predictions of AP prolongation and repolarization abnormality occurrence showed overall good agreement with experiments. However, for multichannel blockers quinidine and verapamil, simulations were not in agreement with experiments across all IC50 datasets and IKr block models tested. Quinidine simulations resulted in overprolonged APs and high incidence of repolarization abnormalities, which were not observed in experiments. Verapamil simulations showed substantial AP prolongation while experiments showed mild AP shortening. Conclusions: Results for dofetilide and sotalol show good agreement between experiments and simulations for selective compounds, however lack of agreement from simulations of quinidine and verapamil suggest further work is needed to understand the more complex electrophysiological effects of these multichannel blocking drugs
- …
