1,883 research outputs found

    RMSE-ELM: Recursive Model based Selective Ensemble of Extreme Learning Machines for Robustness Improvement

    Get PDF
    Extreme learning machine (ELM) as an emerging branch of shallow networks has shown its excellent generalization and fast learning speed. However, for blended data, the robustness of ELM is weak because its weights and biases of hidden nodes are set randomly. Moreover, the noisy data exert a negative effect. To solve this problem, a new framework called RMSE-ELM is proposed in this paper. It is a two-layer recursive model. In the first layer, the framework trains lots of ELMs in different groups concurrently, then employs selective ensemble to pick out an optimal set of ELMs in each group, which can be merged into a large group of ELMs called candidate pool. In the second layer, selective ensemble is recursively used on candidate pool to acquire the final ensemble. In the experiments, we apply UCI blended datasets to confirm the robustness of our new approach in two key aspects (mean square error and standard deviation). The space complexity of our method is increased to some degree, but the results have shown that RMSE-ELM significantly improves robustness with slightly computational time compared with representative methods (ELM, OP-ELM, GASEN-ELM, GASEN-BP and E-GASEN). It becomes a potential framework to solve robustness issue of ELM for high-dimensional blended data in the future.Comment: Accepted for publication in Mathematical Problems in Engineering, 09/22/201

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    ELM ZA KLASIFIKACIJU TUMORA MOZGA KOD 3D MR SNIMAKA

    Get PDF
    Extreme Learning machine (ELM) a widely adopted algorithm in machine learning field is proposed for the use of pattern classification model using 3D MRI images for identifying tissue abnormalities in brain histology. The four class classification includes gray matter, white matter, cerebrospinal-fluid and tumor. The 3D MRI assessed by a pathologist indicates the ROI and the images are normalized. Texture features for each of the sub-regions is based on the Run-length Matrix, Co-occurence Matrix, Intensity, Euclidean distance, Gradient vector and neighbourhood statistics. Genetic Algorithm is custom designed to extract and sub-select a decisive optimal bank of features which are then used to model the ELM classifier and best selection of ELM algorithm parameters to handle sparse image data. The algorithm is explored using different activation function and the effect of number of neurons in the hidden layer by using different ratios of the number of features in the training and test data. The ELM classification outperformed in terms of accuracy, sensitivity and specificity as 93.20 %, 91.6 %, and 97.98% for discrimination of brain and pathological tumor tissue classification against state-of-the-art feature extraction methods and classifiers in the literature for publicly available SPL dataset.ELM, široko prihvaćen algoritam strojnog učenja se predlaže za korištenje u uzorkovanju pomoću klasifikacijskog modela 3D MRI slika za identifikaciju abnormalnosti tkiva u histologiji mozga. Četiri klase obuhvaćaju sive, bijele tvari, cerebrospinalne tekućine-i tumore. 3D MRI koji ocjenjuje patolog, ukazuje na ROI, a slike su normalizirane. Značajke tekstura za svaku od podregija se temelje na Run-length matrici, ponovnom pojavljivanju matrice, intenzitet, euklidska udaljenost, gradijent vektora i statistike susjedstva. Genetski algoritam je obično dizajniran za izdvajanje i sub-optimalan odabir odlučujući o značajkama koje se onda koriste za model ELM klasifikatora i najbolji izbor ELM parametra algoritama za obradu rijetkih slikovnih podataka. Algoritam se istražuje koristeći različite aktivacijske funkcije i utjecaj broja neurona u skrivenom sloju pomoću različitih omjera broja značajki kod trening i test podataka. ELM klasifikacija je nadmašila u smislu točnosti, osjetljivosti i specifičnosti, kao 93,20%, 91,6% i 97,98% za diskriminaciju mozga i patološki kod tumora i sistematizacije metode za prikupljanje podataka i klasifikatore u literaturi za javno dostupne SPL skup podataka

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features

    A review on a deep learning perspective in brain cancer classification

    Get PDF
    AWorld Health Organization (WHO) Feb 2018 report has recently shown that mortality rate due to brain or central nervous system (CNS) cancer is the highest in the Asian continent. It is of critical importance that cancer be detected earlier so that many of these lives can be saved. Cancer grading is an important aspect for targeted therapy. As cancer diagnosis is highly invasive, time consuming and expensive, there is an immediate requirement to develop a non-invasive, cost-effective and efficient tools for brain cancer characterization and grade estimation. Brain scans using magnetic resonance imaging (MRI), computed tomography (CT), as well as other imaging modalities, are fast and safer methods for tumor detection. In this paper, we tried to summarize the pathophysiology of brain cancer, imaging modalities of brain cancer and automatic computer assisted methods for brain cancer characterization in a machine and deep learning paradigm. Another objective of this paper is to find the current issues in existing engineering methods and also project a future paradigm. Further, we have highlighted the relationship between brain cancer and other brain disorders like stroke, Alzheimer’s, Parkinson’s, andWilson’s disease, leukoriaosis, and other neurological disorders in the context of machine learning and the deep learning paradigm

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era
    corecore