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For blended data, the robustness of extreme learning machine (ELM) is so weak because the coefficients (weights and biases) of
hidden nodes are set randomly and the noisy data exert a negative effect. To solve this problem, a new framework called “RMSE-
ELM” is proposed in this paper. It is a two-layer recursive model. In the first layer, the framework trains lots of ELMs in different
ensemble groups concurrently and then employs selective ensemble approach to pick out an optimal set of ELMs in each group,
which can bemerged into a large groupof ELMs called candidate pool. In the second layer, selective ensemble approach is recursively
used on candidate pool to acquire the final ensemble. In the experiments, we applyUCI blendeddatasets to confirm the robustness of
our new approach in two key aspects (mean square error and standard deviation).The space complexity of our method is increased
to some degree, but the result has shown that RMSE-ELM significantly improves robustness with a rapid learning speed compared
to representative methods (ELM, OP-ELM, GASEN-ELM, GASEN-BP, and E-GASEN). It becomes a potential framework to solve
robustness issue of ELM for high-dimensional blended data in the future.

1. Introduction

In recent two or three decades, neural networks are increas-
ingly popular in machine learning community. Specifically
for recent five years, lots of researchers mainly have paid
their attention on deep structures such as deep Boltzmann
machine [1] and convolution neural network [2]. However,
the deep networks are hardly applied into real-time area in
big data era because of two reasons: first of all, there is no
free lunch in any algorithms. Though the training accuracy
of deep network is pretty high, the training time is so long
that we can hardly bear the computational cost [3]. Secondly,
the deep structures tend to fall into the pit called “overfitting,”
which means that it has a bad generalization. What is more
is that the tuning of parameters in deep networks is very
time consuming [4]. So the shallow structure is naturally our
intuition for big data analysis and real-time application.

Recently, the extreme learning machine (ELM) [5] as
an emerging branch of shallow networks was proposed by
Huang et al. It was evolved from single hidden layer feed-
forward networks (SFLNs). It has shown the excellent gener-
alization performance and fast learning speed compared to
deep belief networks [6] or deep Boltzmann machines [7].
In essence, the algorithm of ELM has two main steps: in
the first step, the input weights and biases can be assigned
randomly, which will definitely reduce computational cost
because they do not need to be tunedmanually. In the second
step, the output weights of ELM can be computed easily by
the generalized inverse of hidden layer output matrix and
target matrix [8]. In terms of the computational performance
of ELM, it tends to reach not only the smallest training error
but also the smallest norm of output weights with rapid
speed. Based on above merits of ELM, a lot of researchers
in machine learning community now increasingly customize
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their own frameworks based on ELM for specific issues. For
equalization problems, ELM based complex-valued neural
networks are a powerful tool. For regression or multilabel
issues, the kernel based ELM proposed by Huang et al. is
effective [9, 10]. For generalization problem, incremental
ELM [11] outperforms many representative algorithms like
SVM [12], stochastic BP [13], and so on. What is more is
that various extended ELMs also attract our attention. For
example, online sequential ELM [14] is an efficient learning
algorithm to handle both additive [15] and RBF [16, 17] nodes
in the unified framework. In complex dimensional space, the
kernel implementation of ELM is superior to conventional
SVM. From the above discussion, we can conclude that ELM
is an excellent algorithm for different issues in machine
learning area.

However, as the keynote given by Huang et al. indicate,
the robustness analysis is still one of the open problems in
ELM community [5, 18]. Different researchers have different
research styles to tackle with the same problem. Previously,
Rong et al. presented pruning algorithm called P-ELM to
improve the robustness of ELM [19]. And also Miche et al.
proposed an algorithm called OP-ELM [20, 21] to improve
the robustness due to its variable selectionmechanism, which
removes the irrelevant variables from blended data efficiently
[21, 22]. However, for blended data (namely, the raw data
is blended with noisy data), they do not work very well
because of two reasons. First, the mechanism of variables
pruning is very time consuming. What is more is that the
standard deviations of training error in the above twomodels
are relatively high, which means that these models are not
the top choice for robustness improvement. If we want to
improve the robustness of original ELM, we should initially
clarify why the ELM is so weak for blended data. First
of all, we believe ELM sets its initial weights and biases
randomly, which largely reduce the computational time but
cannot guarantee the suitable parameters of hidden nodes
for good robustness. Second, the noisy data exert a negative
effect on robustness of ELM. So for blended data, my initial
intuition is that if we train a batch of different ELMs and then
ensemble them averagely, we might improve the robustness
because of Hansen and Salamon’s theory [23]. It proved
that the robustness performance of a single network can be
improved by an ensemble of neural networks. Krogh and
Sollich [24] confirmed it later. Thus, based on this theory,
Sun et al. proposed the average weighted ELM ensemble
[25], which has a better generalization than original ELM
on raw data. But on blended data, the average weighted
ELM ensemble does not work well because it is negatively
affected by noisy data such as Gaussian noise or uniform
noise. Zhou et al. [26] proposed a new framework called
GASEN, which can resist the negative effect from noisy data.
In his theory, the ensemble of several optimal networks may
be better than the ensemble of all networks. The GASEN is
fully based on genetic algorithm and back-propagation (BP)
neural networks. Therefore, in real-time area, we should not
apply GASEN directly for robustness improvement because
of high computation cost.

Inspired by above observations, for blended data [27],
we hope to create a new computational framework, which

not only improves the robustness largely but also keeps a
rapid learning speed. So in this paper, a new approach called
“RMSE-ELM” is proposed. Our tuition can be concluded into
two aspects: first, selective ensemble approach is an effective
tool to resist noisy data but the kernel of framework is usually
the BP networks. What is more is that the genetic algorithm
itself is a little bit complicated.Therefore, the training process
is so time consuming [28]. So we hope to employ the advan-
tage of ELM to speed up the selective ensemble approach.
Second, in cognitive science, the information processing of
human brain is constructed hierarchically, and it can extract
different useful information layer by layer. However, themore
layers we construct, the more parameters the algorithm will
learn, which will definitely increase the computational cost.
Therefore, we hope to construct a semishallow framework for
a good compromise between robustness and computational
cost. For technical details, it is a two-layer recursive model.
In the first layer, we concurrently train lots of ELMs in
different groups and then we employ selective ensemble
approach to pick out several ELMs in each group, which
can be transmitted into the second layer called candidates
pool. In the second layer, we employ selective ensemble
approach recursively to pick out several ELMs for the average
ensemble. In the experiments, we apply UCI blended datasets
[29] to confirm the robustness of new method, which is
compared to that of several methods such as ELM, OP-ELM,
GASEN-ELM,GASEN-BP, and E-GASEN in two key aspects:
mean square error and standard deviation.Though the space
complexity of our method is increased to some degree,
the results have shown that the RMSE-ELM significantly
improves the robustness with a rapid learning speed. We will
further explore how many layers can achieve the optimal
compromise between the robustness and computational cost
in our framework. The extended RMSE-ELM has a great
potential to be a trend framework to solve robustness issue
of ELM for high-dimensional blended data in the future.

We organize the rest of the paper as follows. In Section 2,
we discuss previous work on classical ELM and selec-
tive ensemble. In Section 3 we describe our new method
called RMSE-ELM from structure to theory. In Section 4,
for UCI blended datasets, several experimental results on
ELM, OP-ELM, GASEN-ELM, GASEN-BP, and E-GASEN
are reported, respectively. In Section 5, we present our dis-
cussions of the motivation of benchmark selection and other
facts revealed by experiments. Finally, in Section 6, conclu-
sions are drawn and future work and direction are indicated.

2. Previous Works

2.1. Extreme Learning Machine. Extreme learning machine
(ELM) has been developed to obtain a much faster learning
speed and higher generalization performance both in the
regression and classification problem. The essence of ELM
is the hidden layers of SFLNs which need not be tuned
iteratively [5, 30]; that is, the parameters of the hidden nodes
which include input weights and biases can be randomly
generated and then it only needs to solve the output weights.
The structure of ELM is shown in Figure 1.
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(2) Calculate the hidden layer output matrix𝐻.
(3) Calculate the output weight vector 𝛽 = 𝐻†𝑌.

Algorithm 1: Extreme learning machine.
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Figure 1: The structure of ELM algorithm.
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from the sigmoid function, the hard-limit function, the

Gaussian function, the multiquadric function, and any other
function which is infinitely differentiable in any interval so
that the hidden layer parameters can be randomly generated.
The above equation can also be written compactly as
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Here𝐻 is called the hidden layer output matrix of the neural
network.When the training set 𝑥

𝑖
is given and the parameters

(𝜔
𝑡
, 𝑏
𝑡
) are randomly generated, matrix 𝐻 can be obtained.

And then the output weights 𝛽 can be generated as

𝛽 = 𝐻
†
𝑌, (6)

where𝐻† denotes the Moore-Penrose generalized inverse of
matrix𝐻 [31, 32].

In summary, the ELM algorithm can be presented as in
Algorithm 1.

2.2. Selective Ensemble. In recent years, ensemble learning
has received lots of attention from machine learning com-
munity due to its potential to improve the generalization
capability of a learning system [33, 34]. With the increase of
size, the prediction speed of an ensemble machine decreases
significantly but its storage increases quickly. Zhou et al.
[35] have proved that many could be better than all and
proposed a new framework called selective ensemble. The
aim of selective ensemble learning is to further improve the
prediction accuracy of an ensemble machine, to enhance its
prediction speed, and to decrease its storage need. Selective
ensemble learning mainly involves three steps [36].
(1)The first is raining a set of base learners individually

generated from bootstrap samples of a fixed training data.
(2) The second is selecting right components from all

the available learners and excluding the bad base learners
to form an optimal ensemble. Genetic algorithm is used
for components selection. The population of base learners
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is encoded as real chromosomes so that one bit represents
the average weight of initial learner ensemble. Suppose 𝑥
is randomly sampled through a distribution 𝑝(𝑥), and the
expected output is 𝑦, and the output of the 𝑖th base ELM
is 𝑓
𝑖
(𝑥). The optimum weight 𝜔∗ is expressed as empirical

equation (7) which minimizes the generalization error of the
ensemble model
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Therefore, the 𝑘th (𝑘 = 1, . . . , 𝑁) of optimum weight 𝜔∗ can
be solved by Lagrange multiplier, which satisfies

𝜔
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∑
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∑
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𝑖=1
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𝑗=1
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. (9)

Genetic algorithmbased selective ensemble assigns a random
weight to every base ELM first. Then, genetic algorithm is
used to evolve those weights so that they can characterize the
fitness of the ELM in joining the ensemble to some extent.
(3) The third is combining the selected base learner

components to get the final predictions.

3. New Method

3.1. The Structure of RMSE-ELM. Inspired by the above
discussions, for blended data, we hope to create a new
computational framework, which not only improves the
robustness performance of ELM largely but also keeps a rapid
learning speed. We naturally have two tuitions below.

First of all, traditional selective ensemble approach like
GASEN algorithm is definitely an effective tool to resist
noisy data because it utilizes fewer but better individual
models to ensemble, which achieves stronger generalization
ability. But both genetic algorithms employed by GASEN and
the training process of individual kernels (BPs) are so time
consuming, which can hardly be used in industry or real-
time situation. So we hope to build our customized selective
ensemble based on ELM kernels because of its rapid learning
speed.

Secondly, from the point of view of cognitive science,
the information processing of human brain is constructed
hierarchically, and it can extract different useful information
layer by layer. However, if we completely construct our
networks as our brain, for example, a deep-layer network, we
may encounter several training problems. Firstly, the training
time is so long that we can rarely bear the computational
cost, not to mention big data analysis. Secondly, the deep
structures tend to fall into the pit called “overfitting” which in
turn means the weak generalization. Moreover, the tuning of
parameters in deep networks needs large amount of time and

personal experience. So the semishallow structure is naturally
top choice for big data analysis and real-time application.

In this paper, we present a framework called “RMSE-
ELM” to improve the robustness of ELM for blended data
with acceptable computational cost. The figure of our frame-
work shows in Figure 2.

Just as in Figure 2, it is a two-layer recursivemodel, which
is a good compromise between shallow and deep network. In
the first layer, we concurrently train lots of ELMs that belong
to the different ensemble groups and thenwe employ selective
ensemble approach to pick out several ELMs in each group,
which can be transmitted into our second layer, the pool of
better candidates. In the second layer, we employ selective
ensemble recursively to pick from selected ELMs and then
ensemble an optimal set of ELMs to acquire the final result.

Although our framework is relatively simple compared
with deep structure networks, we believe that it locates in the
right track to solve the robustness issues of ELM.

3.2. The Theory of RMSE-ELM. Now let us first analyze our
framework in theory. From above discussion, we can clearly
see our framework recursively employ selective ensemble
approach. In essence, the recursive model algorithm based
selective ensemble can be explained as the hierarchical model
based selective ensemble. So if the selective ensemble can
work well, theoretically, the recursive model based selective
ensemble can work better.

So firstly we should analyze whether the selective ensem-
ble of extreme learning machine is good enough. Please note
currently the individual networks are ELMs instead of BP
networks. To be honest, it is not an easy task excluding the
bad ELMs from our target group. In order to generate the
ensemble ELMwith small size but stronger generation ability,
genetic algorithm is used to select the ELM models with
high fitness from a set of available ELMs. Suppose that the
learning task is to approximate a function 𝑓 : 𝑅𝑚 → 𝑅

𝑛; it
can be represented by an ensemble of 𝑁 base ELM learners.
The predictions of the base ELM learners are combined by
weighted averaging, where a weight 𝜔

𝑖
(𝑖 = 1, . . . , 𝑁) is

assigned to the individual base ELM learner 𝑓
𝑖
(𝑖 = 1, . . . , 𝑁),

and 𝜔
𝑖
satisfies

0 ≤ 𝜔
𝑖
≤ 1,

𝑁

∑

𝑖=1

𝜔
𝑖
= 1. (10)

Then the output of ensemble is

𝑓 (𝑥) =

𝑁

∑

𝑖=1

𝜔
𝑖
𝑓
𝑖 (𝑥) , (11)

where 𝑓
𝑖
is the output of the 𝑖th base ELM learner.

We assume that each base ELM learner has only one
output. Suppose 𝑥 ∈ 𝑅

𝑚 is randomly sampled through a
distribution 𝑝(𝑥). And the target for 𝑥 is 𝑑(𝑥). Then the error
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Figure 2: The framework of RMSE-ELM.
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2
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Then the generalization error 𝐸
𝑖
of the 𝑖th base ELM learner

and the generalization error 𝐸 of the ensemble on the
distribution 𝑝(𝑥) are, respectively,
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Define the correlation between the 𝑖th and the 𝑗th individual
base ELM learner as
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When the base ELM learners are combined by the simple
ensemble method; that is 𝜔

𝑖
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Now, we assume that the 𝑘th base learner is omitted; the new
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According to (14), the generalization error of the 𝑘th base
ELM learner

𝐸
𝑘
= ∫𝑑𝑥𝑝 (𝑥) 𝐸𝑘 (𝑥) . (22)

Therefore,

𝐸 − 𝐸 =
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.
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Then,

𝐸 > 𝐸 (25)

which means new ensemble omitting the 𝑘th learner is now
more robust than original ensemble.

So we can get a constraint condition from (24) and (25):
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According to (21) and (27), the constraint condition can be
deduced as follows:

(2𝑁 − 1)

𝑁

∑

𝑖=1

𝑖 ̸=𝑘

𝑁

∑

𝑗=1

𝑗 ̸=𝑘

𝐶
𝑖𝑗
< 2(𝑁 − 1)

2

𝑁

∑

𝑖=1

𝑖 ̸=𝑘

𝐶
𝑖𝑘
+ (𝑁 − 1)

2
𝐸
𝑘
. (28)

Therefore, it is proved that when using the simple ensemble
method and when constraint condition (28) is satisfied, then
omitting the 𝑘th base learner will improve the ensemble’s
generalization ability.

There is a conclusion that after lots of ELMs are trained,
ensemble of an appropriate subset of them is superior to
ensemble of all of them in some cases. The individual ELMs
that should be omitted satisfy (28). This result implies that
the ensemble does not use all the networks to achieve good
performance. Therefore, the selective ensemble of ELM can
work well.

According to the above proofs, the recursive model
based selective ensemble of extreme learning machine might
be better than the selective ensemble of extreme learning
machine because of three reasons below: firstly, the best
result comes from the better results more easily, so if the first
layer of our framework can effectively select an optimal group
of different ELMs, the second layer has a great potential to

produce a better result based on an optimal group of ELMs.
Secondly, from the network structure, the recursive model
based selective ensemble can be explained as the hierarchical
model based selective ensemble. And the RMSE-ELM is a
natural extension of selective ensemble of extreme learning
machine. Therefore, if each part can work well, the whole
system can work well at least. Finally, lots of experiments
in recent years have shown that if more neural networks
are included, in some cases the generalization error of the
ensemble might be further reduced.

From above theoretical discussion, we see why the
recursive model based selective ensemble of extreme learn-
ing machine can work better. However, we will further
explore how many layers can achieve the optimal com-
promise between robustness and computational cost. The
pseudocode of our current framework is organized as shown
in Algorithm 2.

4. Experiments

In this section, we present some experiments on 4 UCI
blended datasets to verify whether RMSE-ELM performs
better in robustness than other methods such as ELM, OP-
ELM, GASEN-ELM, GASEN-BP, and E-GASEN for blended
data. At the same time, computational cost is also a significant
parameter to evaluate the usefulness of our new framework.
All simulations are carried out in Matlab environment run-
ning in an Intel Corei5-3470 (3.20GHz CPU).

Four types of datasets are all selected from the UCI
machine learning repository [37]. The first one is Boston
Housing dataset which contains 506 samples. Each sample is
composed of 13 input variables and 1 output variable. And
this dataset is divided into a training set of 400 samples
and a testing set of the rest. The second one is Abalone
dataset. There are 7 continuous input variables, 1 discrete
input variable, and 1 categorical attribute in this dataset. It
comprises 4177 samples, among which, 2000 samples are
used for training and the rest 2177 samples are used for
testing. The third one is Red Wine dataset which contains
1599 samples. Each sample consists of 11 input variables and 1
output variable; the dataset is divided into two sections: 1065
samples for training set and the rest of samples for testing
set. Finally, Waveform dataset with more numbers of input
variables is selected. This dataset contains 21 input variables
and 1 output variable. The specification of the four types of
datasets is shown in Table 1.

Firstly, we randomly mix several irrelevant Gaussian
noises with the original UCI data, and all features of data
are normalized into a similar scale. Secondly, we train the
different models such as ELM, OP-ELM, GASEN-ELM,
GASEN-BP, E-GASEN, and RMSE-ELM on the training set
of blended data. Finally, we test the different models on the
testing set of blended data to acquire experimental results
including mean square error (MSE), standard deviation
(STD), and computational cost (CC). In our experiments,
the genetic algorithm employed by RMSE-ELM is imple-
mented by the GAOT toolbox developed by Houck et al.
In the toolbox, the genetic operators (selecting, crossover
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Given: training set (𝑋, 𝑌),𝑀 (the size of ensemble groups in the first layer),𝑁
1
(the size

of each ensemble in the first layer),𝑁
2
(the size of candidates pool in the second

layer), 𝜔∗ is defined in (7), threshold 𝜆 is a pre-set value (reciprocal value of𝑁
1
or𝑁
2
).

Steps:
(1) for 𝑔𝑟𝑜𝑢𝑝 = 1, . . . ,𝑀

{ 𝑁
2
= 0;

for 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 1, . . . , 𝑁
1

{ Training each ELM network;
Generating a population of weight vector;
Using selective ensample to get the best weight vector 𝜔∗

1
;

Removing base ELMs that the weights less than 𝜆
1
= 1/𝑁

1
;

}

Calculating the whole remained ELMs of group 𝑖 are 𝑛
𝑖
;

𝑁
2
= 𝑁
2
+ 𝑛
𝑖
;

}

(2) Training𝑁
2
remained ELM;

(3) Using selective ensemble to get the best weight vector 𝜔∗
2
;

(4) Removing base ELMs that the weights less than 𝜆
2
= 1/𝑁

2
;

(5) Getting the final prediction;

Algorithm 2: RMSE-ELM.

Table 1: Specification of the 2 tested regression data sets.

Task Number of variables Number of trainings Number of tests Abbr.
Boston housing 13 400 106 BH
Abalone 8 2000 2177 Aba
Red Wine 11 1065 534 RW
Waveform 21 3000 2000 Wav

Table 2: MSE for UCI blended datasets (7 irrelevant variables).

Data set ELM OP-ELM GASEN-ELM GASEN-BP E-GASEN RMSE-ELM
BH 5.8564 4.9823 5.0543 4.7869 4.8822 4.7763
Aba 34.5586 31.4742 30.0193 29.5716 28.3969 26.0626
RW 0.4998 0.4946 0.4514 0.5412 0.4488 0.4374
Wav 0.3733 0.3412 0.3429 0.2671 0.3371 0.3276

probability, mutation probability, and stopping criterion) are
set to the default values. The first group of original UCI data
is blended with 7 irrelevant variables that all conform to the
Gaussian distributions, such as 𝑁(0, 2), 𝑁(0, 1), 𝑁(0, 0.5),
𝑁(0, 0.1), 𝑁(0, 0.005), 𝑁(0, 0.001), and 𝑁(0, 0.0005). To
acquire the convincing result, the second group of original
data is blended with 10 irrelevant Gaussian variables, such as
𝑁(0, 2), 𝑁(0, 1), 𝑁(0, 0.5), 𝑁(0, 0.1), 𝑁(0, 0.05), 𝑁(0, 0.01),
𝑁(0, 0.005),𝑁(0, 0.001),𝑁(0, 0.0005), and𝑁(0, 0.0001). For
different ensemble frameworks (GASEN-ELM, GASEN-BP,
E-GASEN, and RMSE-ELM), the number of ELMs in each
ensemble group is initially set to 20 [38], so the threshold
𝜆 used by selective ensemble is set to 0.05 because it is
the reciprocal value of the size of each ensemble according
to Zhou’s experiment. For hierarchical models such as E-
GASEN and RMSE-ELM, the number of ensemble groups
is set to 4 according to Zhou’s experiments. In addition, the
number of hidden units in each ELM is set to 50 because it
can acquire the better performance at this point. Specifically

speaking, the testing RMSE curve gradually decreases to a
constant value and also the learning time is still less after this
point [11]. For each algorithm we perform 5 runs and record
the average value of MSE, STD, and CC. The experimental
results are shown in Tables 2–7 and Figures 3-4.

There are two important criteria for robustness assess-
ment (MSE and STD). Let us first analyze the MSE among
different methods on UCI blended datasets. For the evalua-
tion of MSE, we visualize the experimental results in Tables 2
and 3 into Figure 3. We define the difference of MSE between
RMSE-ELM and other methods as MSE comparison. The
formula is

MSE comparison

=
MSE (other methods) −MSE (RMSE ELM)

MSE (other methods)

× 100%.

(29)
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Table 3: MSE for UCI blended datasets (10 irrelevant variables).

Data set ELM OP-ELM GASEN-ELM GASEN-BP E-GASEN RMSE-ELM
BH 6.3748 5.0672 5.7973 4.8495 5.6263 5.4462
Aba 34.7401 29.5260 29.7477 27.6825 27.5196 26.2389
RW 0.5069 0.4969 0.4613 0.5399 0.4512 0.4422
Wav 0.3750 0.3339 0.3489 0.2747 0.3449 0.3347

Table 4: STD for UCI blended datasets (7 irrelevant variables).

Data set ELM OP-ELM GASEN-ELM GASEN-BP E-GASEN RMSE-ELM
BH 0.2236 0.1416 0.1024 0.1551 0.0494 0.1109
Aba 3.2644 7.2611 1.3031 1.6831 0.4601 1.3439
RW 0.0191 0.0091 0.0092 0.0270 0.0033 0.0110
Wav 0.0094 0.0187 0.0031 0.0069 0.0020 0.0041

Table 5: STD for UCI blended datasets (10 irrelevant variables).

Data set ELM OP-ELM GASEN-ELM GASEN-BP E-GASEN RMSE-ELM
BH 0.1864 0.1807 0.0923 0.1702 0.0400 0.1047
Aba 3.1029 4.3826 1.7374 1.8569 0.4019 1.4385
RW 0.0168 0.0166 0.0086 0.0216 0.0023 0.0085
Wav 0.0107 0.0233 0.0039 0.0098 0.0016 0.0026

Table 6: CC for UCI blended datasets (7 irrelevant variables, unit: seconds).

Data set ELM OP-ELM GASEN-ELM GASEN-BP E-GASEN RMSE-ELM
BH 0.0920 234.5413 2.5023 574.1617 4.6832 3.7206
Aba 0.0250 25.7682 1.4180 205.4845 7.6893 2.4960
RW 0.0390 189.7191 1.8720 361.7819 3.0015 2.9203
Wav 0.1427 534.6310 2.8408 1534.0000 4.8984 3.8485

Table 7: CC for UCI blended datasets (10 irrelevant variables, unit: seconds).

Data set ELM OP-ELM GASEN-ELM GASEN-BP E-GASEN RMSE-ELM
BH 0.0952 281.5818 2.7363 634.8929 3.8517 3.9226
Aba 0.0250 33.0161 1.4383 229.8675 6.8874 2.7191
RW 0.0406 263.2673 1.7581 431.6392 2.3665 3.0373
Wav 0.1045 559.4664 2.7924 1995.4000 6.2244 3.8454

Therefore, in Figure 3, positive percentage means the MSE
of new method (RMSE-ELM) is lower than other methods,
which in turn proves that the robustness of new method is
better, or vice versa. In four types of UCI blended datasets,
the results show that theMSEof ourmethod is lower than that
of other methods in most cases. In particular, the difference
of MSE between our method and ELM is more obvious,
which definitely proves that our framework improves the
robustness performance of original ELM for blended data.
However, in some cases, the MSE of GASEN-BP and OP-
ELM is obviously lower than that of RMSE-ELM.

Secondly, for the evaluation of STD, we visualize the
experimental results in Tables 4 and 5 into Figure 4. We

define the difference of STD between RMSE-ELM and other
methods as STD comparison. The formula is

STD comparison

=
STD (other methods) − STD (RMSE ELM)

STD (other methods)

× 100%.

(30)

In Figure 4, positive percentage means the STD of our
method is lower than that of other methods, which proves
that the robustness of our new method is better, or vice
versa. In four types of blended datasets, the results show
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Figure 3: MSE comparison between RMSE-ELM and other methods (𝑥-axis 1: ELM, 2: OP-ELM, 3: GASEN-ELM, 4: GASEN-BP, and 5:
E-GASEN).

that the STD of our method is lower than that of other
methods, which confirms that our framework really improves
the robustness performance for blended data. However, in
some cases, the STD of E-GASEN is obviously lower than
that in RMSE-ELM.

Finally, according to Tables 6 and 7, the results show that
the CC of our method is acceptable. However, the CC of
GASEN-BP andOP-ELM is too long to apply in the real-time
area or industry.

There are two interesting observations above, and we
hope to explain further. Firstly, although in some cases the
MSE ofGASEN-BP andOP-ELM is lower than that of RMSE-
ELM, from the view of statistics, the MSE of RMSE-ELM is
lower than that of GASEN-BP and OP-ELM on the whole.
For example, we have 4 types of UCI datasets and 2 types of
Gaussian noisy variants. If we run above 3 algorithms on 8
types of blended data, for MSE comparison between RMSE-
ELM and GASEN-BP, the MSE of RMSE-ELM is lower on 5
types of blended data while the MSE of GASEN-BP is lower
on 3 types of blended data. For MSE comparison between
RMSE-ELM and OP-ELM, the MSE of RMSE-ELM is lower
on 6 types of blended data while the OP-ELM is lower on
only 2 types of blended data. What is more is that the CC
of RMSE-ELM is much shorter than that of OP-ELM and

GASEN-BP. Secondly, in some cases, though the STD of E-
GASEN is lower than that of RMSE-ELM, theMSE of RMSE-
ELM is totally lower than that of E-GASEN.Moreover, theCC
of RMSE-ELM is shorter than that of E-GASEN except RW
dataset for 10 irrelevant noisy variables.

In conclusion, we believe that our new method in
robustness is definitely better than ELM. We believe that
our framework is a good compromise between robustness
performance and learning speed. However, howmany groups
in the first layer of RMSE-ELM should we choose for the best
robustness performances? It should be further explored.

5. Discussions

Until now, we are very clear about the structure and per-
formance of RMSE-ELM. In the design of experiments, for
added noises, the Gaussian noises are selected because they
are common in real world. For comparable methods, we
select OP-ELM as one of the benchmark methods because
it is almost the first generation of extended ELM to probe
the robustness issue. And both the GASEN-ELM and E-
GASEN are also selected because they have similar mecha-
nism as RMSE-ELM. However, the differences in structure
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Figure 4: STD comparison between RMSE-ELM and other methods (𝑥-axis 1: ELM, 2: OP-ELM, 3: GASEN-ELM, 4: GASEN-BP, and 5:
E-GASEN).

and mechanism among them are also obvious. For example,
GASEN-ELM is a one-layer ensemble network using selective
ensemble approach. Though the E-GASEN is a two-layer
ensemble network like RMSE-ELM, the ensemble in the
second layer is regarded as the simple ensemble instead
of the selective ensemble approach employed by RMSE-
ELM. According to the selection of UCI blended data and
benchmark approaches, we believe that our experimental
results should be fair and convincing.

In the experiments, we tested new method on four types
of UCI datasets, which are blended with 7-dimensional and
10-dimensional Gaussian noises separately. It is clear that
the MSE of our method is almost lower than that of other
methods except for GASEN-BP in some cases. For GASEN-
BP and RMSE-ELM, the CC of GASEN-BP limits its wide use
in industry and real-time area compared with RMSE-ELM.
And also the STD of our method is lower than that of other
methods except for E-GASEN. For E-GASEN and RMSE-
ELM, though the E-GASEN is lower in STD, which means
that E-GASEN is more stable in fluctuation of MSE, in the
rest aspects (MSE and CC), the performance of E-GASEN
is totally worse than that of RMSE-ELM. In conclusion, the
robustness performance of our method is better than that

of other methods for blended data with relatively fast speed.
In essence, the ELM has a weak robustness performance
for blended data mainly because of its simple structure, so
the hierarchical model like recursive model inference is our
natural consideration.

6. Conclusions

In this paper, we proposed a newmethod called RMSE-ELM.
To be more specific, the structure of our framework is the
two-layer ensemble architecture, which recursively employs
selective ensemble to pick out several optimal ELMs from
bottom to top for the final ensemble. The experiments prove
that the robustness performance of RMSE-ELM is better
than original ELM and representative methods for blended
data. Through analysis of experiments, the reasons why our
approach works are proposed as follows. Firstly, the selective
ensemble extracts the optimal subset effectively from each
group in the first layer and from candidate pool in the second
layer. Secondly, the kernel of our framework is ELM, which
has excellent generalization and rapid learning speed. Finally,
the recursive model in essence is a special case of hierarchical
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network, which is a good compromise between shallow
network and deep network. However, analyses presented
in this paper are very preliminary. More experiments and
principles still need to be completed in order to modify
our framework further. Our future work will focus on three
main directions. First, in the framework of RMSE-ELM, how
many groups in the first layer should we choose to acquire
the best robustness? And how many layers can achieve the
optimal compromise between robustness and computational
cost based on our framework? Second is whether the space
complexity of our method can be largely reduced under
regularized framework. For example, if the weight of our
framework can be sparse enough under regularization, the
complexity of our frameworkmight be largely reduced.Third,
whether the selective ensemble approach in the top layer
can be replaced by other criteria for a better robustness
performance. In general, it may be an interesting work to
develop a combination of ensemble learning and hierarchical
model to enhance the robustness performance of ELM in the
future.
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