1,911 research outputs found

    Lost in optimisation of water distribution systems? A literature review of system operation

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Optimisation of the operation of water distribution systems has been an active research field for almost half a century. It has focused mainly on optimal pump operation to minimise pumping costs and optimal water quality management to ensure that standards at customer nodes are met. This paper provides a systematic review by bringing together over two hundred publications from the past three decades, which are relevant to operational optimisation of water distribution systems, particularly optimal pump operation, valve control and system operation for water quality purposes of both urban drinking and regional multiquality water distribution systems. Uniquely, it also contains substantial and thorough information for over one hundred publications in a tabular form, which lists optimisation models inclusive of objectives, constraints, decision variables, solution methodologies used and other details. Research challenges in terms of simulation models, optimisation model formulation, selection of optimisation method and postprocessing needs have also been identified

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Evolutionary Computation in System Identification: Review and Recommendations

    Get PDF
    Two of the steps in system identification are model structure selection and parameter estimation. In model structure selection, several model structures are evaluated and selected. Because the evaluation of all possible model structures during selection and estimation of the parameters requires a lot of time, a rigorous method in which these tasks can be simplified is usually preferred. This paper reviews cumulatively some of the methods that have been tried since the past 40 years. Among the methods, evolutionary computation is known to be the most recent one and hereby being reviewed in more detail, including what advantages the method contains and how it is specifically implemented. At the end of the paper, some recommendations are provided on how evolutionary computation can be utilized in a more effective way. In short, these are by modifying the search strategy and simplifying the procedure based on problem a priori knowledge

    Lost in optimisation of water distribution systems? A literature review of system design

    Get PDF
    This is the final version of the article. Available from MDPI via the DOI in this record.Optimisation of water distribution system design is a well-established research field, which has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of a proposed pipe network infrastructure. This paper reviews in a systematic manner articles published over the past three decades, which are relevant to the design of new water distribution systems, and the strengthening, expansion and rehabilitation of existing water distribution systems, inclusive of design timing, parameter uncertainty, water quality, and operational considerations. It identifies trends and limits in the field, and provides future research directions. Exclusively, this review paper also contains comprehensive information from over one hundred and twenty publications in a tabular form, including optimisation model formulations, solution methodologies used, and other important details

    Particle swarm algorithm with adaptive constraint handling and integrated surrogate model for the management of petroleum fields

    Get PDF
    This paper deals with the development of effective techniques to automatically obtain the optimum management of petroleum fields aiming to increase the oil production during a given concession period of exploration. The optimization formulations of such a problem turn out to be highly multimodal, and may involve constraints. In this paper, we develop a robust particle swarm algorithm coupled with a novel adaptive constraint-handling technique to search for the global optimum of these formulations. However, this is a population-based method, which therefore requires a high number of evaluations of an objective function. Since the performance evaluation of a given management scheme requires a computationally expensive high-fidelity simulation, it is not practicable to use it directly to guide the search. In order to overcome this drawback, a Kriging surrogate model is used, which is trained offline via evaluations of a High-Fidelity simulator on a number of sample points. The optimizer then seeks the optimum of the surrogate model

    Enhancing Cellular Automata via Tabu Search for Optimal Operation of Hydropower Systems

    Get PDF
    One of the environmentally-friendly solutions to meeting energy consumption is multi-reservoir hydropower systems. The operation of a multi-reservoir hydropower system is an entirely complex problem due to a wide range of decision variables. Classic algorithms often get stuck in the local optimum and cannot successfully address these problems. Modern algorithms are more effective than classic ones, although their computational time is very high. In this study, an innovative hybrid model is proposed, called cellular automata-tabu search (CA-TS) to optimally operate multi-reservoir systems. For simplification, CA divides the problem into several sub-problems, which the number of them is the same as the length of operation period. Each sub-problem is solved by TS so that the net benefit of the power generation is maximized. For comparison purpose, a non-linear four-reservoir benchmark problem is considered to evaluate the proposed method. Finally, the results are compared with the existing results obtained by GA, PSO, and CA-NLP, showing the efficiency of CA-TS

    Wind-solar-hydrothermal dispatch using convex optimization

    Get PDF
    In this research a convex optimization methodology is proposed for the Shortterm hydrothermal scheduling (STHS). In addition, wind and solar generation are also considered under a robust approach by modeling the equilibrium of power flow constraint as chance box constraints, which allows determining the amount of renewable source available with a specific probability value. The proposed methodology guarantees global optimum of the convexified model andfast convergences..
    corecore