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Abstract 
One of the environmentally-friendly solutions to meeting energy consumption is multi-

reservoir hydropower systems. The operation of a multi-reservoir hydropower system is an 

entirely complex problem due to a wide range of decision variables. Classic algorithms often get 

stuck in the local optimum and cannot successfully address these problems. Modern algorithms 

are more effective than classic ones, although their computational time is very high. In this 

study, an innovative hybrid model is proposed, called cellular automata-tabu search (CA-TS) to 

optimally operate multi-reservoir systems. For simplification, CA divides the problem into 

several sub-problems, which the number of them is the same as the length of operation period. 

Each sub-problem is solved by TS so that the net benefit of the power generation is maximized. 

For comparison purpose, a non-linear four-reservoir benchmark problem is considered to 

evaluate the proposed method. Finally, the results are compared with the existing results 

obtained by GA, PSO, and CA-NLP, showing the efficiency of CA-TS. 
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1. Introduction  
 

The optimal operation of multi-reservoir systems is a completely complex issue for the 

researchers due to a wide range of decision variables. In the last decades, different classic and 

modern algorithms are employed by researchers to overcome the complexity of the problem.  

Variety of classic methods like linear programming (LP) [1-2], non-linear programming 

(NLP) [3-5] and dynamic programming (DP) [6-11] were applied to address different types of 

problems. 
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Recently, different methods of modern optimization were presented and applied in the field 

of water resources management due to their capability to solve complex problems. The well-

known genetic algorithm (GA) is employed to solve a host of optimization operation problems 

[12-16]. Ant colony optimization (ACO) [17-19], particle swarm optimization (PSO) [20-23], 

Simulated annealing algorithms [24-26], honey bee algorithm [27-28], differential evolution 

algorithm [29-30] and weed optimization [31-32] were used to solve optimal reservoir operation 

problems. 

Recently, an innovative optimization method called cellular automata (CA) is used by Afshar 

and Shahidi [33] to meet demand, especially in the field of water and hydropower supply. Afshar 

and Shahidi [33] applied CA in the field of water supply and hydropower in the Dez reservoir 

and compared their results with the other algorithms, including GA, PSO, and ACO. The results 

showed the efficiency of the CA in comparison with meta-heuristic algorithms. Afshar [21] 

developed this method from a single reservoir to a multi-reservoir to assess the capability of the 

model in operating multi-reservoir hydropower systems. The results revealed that the developed 

model was more potent than both GA and PSO in maximizing produced energy.  Afshar and 

Azizipour [34] proposed a reliability-based version of the CA model for water supply operation. 

Azizipour and Afshar [35] also developed a hybrid GA-CA method for solving reliability-based 

hydropower reservoir operation. In the following, Azizipour and Afshar [36] developed the 

model to an adaptive GA-CA model to solve more intricate problems.    

In this study, an innovative hybrid method called cellular automata-tabu search (CA-TS) is 

presented to optimally address solving multi-reservoir hydropower problems. In the present 

study, the CA method is employed to divide the original problem into several sub-problems with 

the number equal to the length of operation period. Afterward, the TS method tackles these sub-

problems separately and the achieved solutions replaced in the CA when all of the sub-problem 

are solved. This procedure continues until the satisfaction of the convergence criteria. For 

comparison purposes, the presented method is validated by solving a common benchmark 

problem, including four reservoirs, and then the capability of the model is compared with 

metaheuristic algorithms such as GA, PSO, and CA-NLP [21]. 

 

2. Proposed Hybrid Cellular Automata - Tabu Search (CA-TS) model 
 

Hydropower systems are typically operated such that the maximum total energy generation is 

achieved, while existing limitations are met. In this research, maximizing of total benefit of 

energy generation is considered with the following mathematical model. 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃 = ∑ ∑ 𝐵𝑑.𝑡𝐸𝑑.𝑡 

𝑇

𝑡=1

𝐷

𝑑=1

     (1) 

𝑆𝑡+1 = 𝑆𝑡 + 𝐼𝑡 − 𝑀𝑅𝑡         𝑡 = 1.2.3. , , , . 𝑇 (2) 

𝑆𝑑.𝑡
𝑚𝑖𝑛 ≤ 𝑆𝑑.𝑡 ≤ 𝑆𝑑.𝑡

𝑚𝑎𝑥               𝑡 = 1.2.3. , , , . 𝑇 + 1. 𝑑 = 1.2.3. , , , . 𝐷 (3) 

𝑅𝑑.𝑡
𝑚𝑖𝑛 ≤ 𝑅𝑑.𝑡 ≤ 𝑅𝑑.𝑡

𝑚𝑎𝑥                 𝑡 = 1.2.3. , , , . 𝑇  .      𝑑 = 1.2.3. , , , . 𝐷 (4) 

𝐸𝑑.𝑡 = 𝑅𝑑.𝑡ℎ𝑑.𝑡               𝑡 = 1.2.3. , , , . 𝑇  .      𝑑 = 1.2.3. , , , . 𝐷 (5) 

ℎ𝑑.𝑡 = (
𝐻𝑑.𝑡 − 𝐻𝑑.𝑡+1

2
) − 𝑇𝑊𝐿𝑑.𝑡    𝑡 = 1.2.3. , , , . 𝑇  .      𝑑 = 1.2.3. , , , . 𝐷 (6) 

𝐻𝑑.𝑡 = 𝐻𝑑.𝑡 = 𝑎𝑑 + 𝑏𝑑𝑆𝑑.𝑡 + 𝑐𝑑𝑆𝑑.𝑡
2 + 𝑒𝑑𝑆𝑑.𝑡

3     𝑡 = 1.2.3. , , , . 𝑇  .        𝑑 = 1.2.3. , , , . 𝐷 (7) 
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Where, 𝑃 is objective function, 𝐵𝑑.𝑡 is benefit in reservoir d at time step t, 𝐸𝑑.𝑡  is energy 

generation in reservoir d at time step t, St , Rt and It are the vectors of storage, release, and inflow 

volumes, respectively. M is a D*D matrix that connected the reservoirs network. 𝑆𝑑.𝑡
𝑚𝑖𝑛 is the 

minimum acceptable storage volume in reservoir d at time step t, 𝑆𝑘.𝑡
𝑚𝑎𝑥 is maximum acceptable 

storage volume in reservoir d at time step t, 𝑅𝑘.𝑡
𝑚𝑖𝑛 is minimum acceptable release in reservoir d at 

time step t, 𝑅.𝑡
𝑚𝑎𝑥 is maximum acceptable release in reservoir d at time step t, ℎ𝑑.𝑡  is net head in 

reservoir d at time step t for calculating energy generation, 𝐻𝑑.𝑡  is reservoir water level in 

reservoir d at the beginning time step t and 𝐻𝑑.𝑡+1 is the reservoir water level in the reservoir d at 

the end of the time step t, 𝑇𝑊𝐿𝑑.𝑡 is tailwater level in reservoir d at time step t. ad, bd, cd, and ed 

are constants coefficients. D and T are the number of reservoirs and time periods, respectively. 

Using CA capabilities in each problem requires defining four main components, namely cell, 

cell state, which is generally considered as the decision variable, cell neighborhood, and 

updating rule. In this problem, the starting and the endpoint of any time step, indicated via 

separate points on the operation horizon, is considered as cells, and the corresponding reservoirs' 

storage volume as the cell states [21]. The neighborhood component for each cell is determined 

as the previous and the following time step. The determination of the updating rule is a vitally 

important part of the CA method. Here, for a random cell state t, the updating rule should be 

found as a procedure of assigning the proper amount for the decision variable Sk,t to maximize 

system energy production over neighboring periods of t-1 and t 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃𝑡 = ∑(𝐵𝑑,𝑡−1𝐸𝑑,𝑡−1 + 𝐵𝑑,𝑡𝐸𝑑,𝑡 )

𝐷

𝑑=1

 (8) 

 

It is noteworthy that cell state t and t-1 is subjected to: 

 

𝑆𝑑,𝑡
𝑚𝑖𝑛 ≤ 𝑆𝑑,𝑡 ≤ 𝑆𝑑,𝑡

𝑚𝑎𝑥  𝑡 = 1.2.3. , , , . 𝑇  .  𝑑 = 1.2.3. , , , . 𝐷 (9) 

𝑆𝑑.𝑡 = 𝑆𝑑.𝑡−1 + 𝐼𝑑.𝑡−1 − 𝑀𝑑.𝑗𝑅𝑗.𝑡−1 𝑡 = 1.2.3. , , , . 𝑇  .  𝑑 = 1.2.3. , , , . 𝐷 (10) 

𝑆𝑑.𝑡+1 = 𝑆𝑑.𝑡 + 𝐼𝑑.𝑡 − 𝑀𝑑.𝑗𝑅𝑗.𝑡 𝑡 = 1.2.3. , , , . 𝑇  .  𝑑 = 1.2.3. , , , . 𝐷 (11) 

𝑅𝑑.𝑡−1
𝑚𝑖𝑛 ≤ 𝑅𝑑.𝑡−1 ≤ 𝑅𝑑.𝑡−1

𝑚𝑎𝑥  𝑡 = 1.2.3. , , , . 𝑇  .  𝑑 = 1.2.3. , , , . 𝐷 (12) 

𝑅𝑑.𝑡
𝑚𝑖𝑛 ≤ 𝑅𝑑.𝑡 ≤ 𝑅𝑑.𝑡

𝑚𝑎𝑥 𝑡 = 1.2.3. , , , . 𝑇  .  𝑑 = 1.2.3. , , , . 𝐷 (13) 

 

These sub-problems can be solved by any optimization method. However, it is clear the 

selected optimization method for solving sub-problems plays an important role in success of the 

algorithm. Recently, Afshar [21] hired the NLP method to address these sub-problems lead to an 

efficient CA-NLP method. However, employing a classic method to solve this part of the 

problem could cause trapping to the local optimum. Using evolutionary algorithms may avoid 

trapping to the local optimum and also can improve the performance of the CA model. 

Therefore, a well-known evolutionary algorithm, namely tabu search (TS), proposed by Glover 

[37], is selected to optimally solve each sub-problem. TS as a prestigious optimization method 

was effectively implemented to a wide range of hybridization optimization problems. The 

method makes the most of searching strategies that even accept poor solutions to avoid getting 

stuck in a local optimum. The main components of TS algorithm are: 
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1. Move 

TS can produce a neighborhood using the current solution and evaluate it [38]. The move 

action is a movement from the current condition toward a new one. There are different 

methods of movement, namely, swamp, insert, add/drop, and increase/decrease that could be 

employed according to the type of the problem [37]. In this study increase/decrease type is 

employed to build new neighborhoods. 

2. Tabu List 

Considering a memory including a set of moves at each neighborhood called tabu list, which 

is the main feature of the TS [38]. The tabu list keeps a record of selected moves to avoid 

getting stuck in a local optimum. The length of the tabu list can be specified by experience. 

The length of the tabu list can also affect intensification and diversification [39]. 

3. Aspiration Criteria 

Aspiration criteria are applied to prevent a solution's tabu state till the solution is proper 

enough based on quality or diversity. A well-known aspiration criterion permits solutions 

that are better enough than the current best solution.   

The proposed CA-TS model begins with a randomly generated set of reservoirs storage over 

the operation horizon. At each time step, a vector of reservoirs storage is defined as a sub-

problem. This sub-problem is solved by the TS components according to Eqs 8-13. Once solving 

all of the sub-problems by the TS, then new storages volumes are superseded into the CA part. 

This interaction between CA and TS keeps on until the convergence criteria are met.   

3. Case study 
 

The capability of the model is evaluated by solving a benchmark problem called 4-reservoir 

non-linear problem. The schematic representation of the problem is shown in Fig. 1. The related 

data of the modified version of the 4-reservoir problem, including maximum/minimum storages 

and releases volumes, can be found in Afshar [21]. According to this fact that solving the 

original linear form of the 4-reservoir problem proposed by Chow and Cortes-Rivera [40] cannot 

validate the effectiveness and efficiency of the model, the modified non-linear version of the 4-

reservoir problem proposed by Afshar [21] employed here. The original linear form of the 4-

reservoir problem defined over 12 months operation period having 12 decision variables. The 

proposed modified non-linear version of 4-reservoir consists of 12, 60, and 240 short, medium, 

and long-term operations having 44, 236, and 956 decision variables, respectively. Therefore, it 

can evaluate the ability of the model to tackle different scales of non-linear problems. 
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Figure 1. Schematic representation of the 4-reservoir problem 

4. Result and discussion 
 

The 4-reservoir nonlinear problem was solved by proposed CA-TS method and the minimum, 

average, and maximum obtained objective functions over 10 runs are shown in Table 1. The 

table also presents the average required computational time to converge. The computational 

effort for solving the problems, especially long-term problem, proves the efficiency of the 

proposed algorithm. As shown in the table, the number of run-time increases linearly with 

enlarging the problem.  

 
Table 1. Results of proposed model for different operation periods 

 Total Benefit 
Average CPU Time (Sec) 

Period Max Average Min 

12 34200 33260 32000 11 

60 172000 168000 166000 63 

240 687000 667000 655000 255 

 

Table 2 compares the results of the proposed method with those of reported by Afshar [21]. It 

is obvious in the table that the proposed method can produce superior results in comparison with 

other optimization algorithms in all operation periods, with relatively less computational effort. 

The CA-TS model could obtain better solutions by 2.4%, 4.87%, and 5.69% than GA in 12, 60, 

and 240- operation periods, respectively. It is also seen that the model’s superiority increases by 

increasing the scale of the problem. While associated the run-time with the GA increases 

exponentially with enlarging the scale of the problem, the run-time which belongs in the 

proposed model increases linearly. For instance, the proposed method requires roughly one-sixth 

of the run-time of the GA to converge to its optimal solution over a 240-month operation period. 

It is noteworthy to mention that different tuning parameters related to the GA and PSO can be 

found in [21].  

Although the run-time of the CA-NLP model is less than the proposed model, the CA-NLP 

model is prone to get stuck in local optima. As shown in the table, the obtained result of CA-

NLP in a 60-month operation period is inferior to the both of GA and proposed model. 

Reservoir 1 

Reservoir 2 Reservoir 3 

Reservoir 4 
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Table 2. Comparison between proposed model and Afshar [21] models 

Periods Method Best solution Average CPU Time (Sec) 

12 

CA-TS 3.42E+04 11 

CA-NLP* 3.34E+04 0.34 

GA* 3.34E+04 6.90 

PSO* 3.34E+04 9.60 

60 

CA-TS 1.72E+05 63.00 

CA-NLP* 1.62E+05 12.50 

GA* 1.64E+05 126.70 

PSO* 1.49E+05 181.80 

240 

CA-TS 6.87E+05 255.00 

CA-NLP* 6.59E+05 73.50 

GA* 6.50E+05 1487.00 

PSO* 5.89E+05 2208.90 
*The results reported in [21].  

 

Convergence curves for 12 and 240-month operation period are shown in Fig. 2 and Fig. 3, 

respectively. As it is clearly seen, the number of CA iterations is independent of the scale of the 

problem; so, increasing the operation period cannot affect the number of iterations. The model 

can not only produce better solutions than modern algorithms, but the most crucial characteristic 

of the model is the high rate of convergence in large-scale problems. 

 

 
Figure 2. Convergence curve for 12 Months of operation 
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Figure 3. Convergence curves for 240 months of operation 

5. Conclusion 
 

For optimal hydropower operation, an innovative hybrid model, called cellular automata-tabu 

search (CA-TS) was developed to maximize the produced energy. For simplification, the 

original problem was divided into several sub-problems, which the number of them is the same 

as the length of the operation period, and each of these sub-problems was addressed by a well-

known algorithm called tabu search algorithm.  

The capability of the model was investigated by comparing obtained results of the model with 

those reported by Afshar [21] in solving a benchmark non-linear four-reservoir problem for 

different operation periods (12, 60, and 240 months). The results indicated that the proposed 

model could optimally address various scales of problems in comparison with GA, PSO, and 

CA-NLP methods. 
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